Abstract:Surgical planning for complex tibial fractures can be challenging for surgeons, as the 3D structure of the later desirable bone alignment may be difficult to imagine. To assist in such planning, we address the challenge of predicting a patient-specific reconstruction target from a CT of the fractured tibia. Our approach combines neural registration and autoencoder models. Specifically, we first train a modified spatial transformer network (STN) to register a raw CT to a standardized coordinate system of a jointly trained tibia prototype. Subsequently, various autoencoder (AE) architectures are trained to model healthy tibial variations. Both the STN and AE models are further designed to be robust to masked input, allowing us to apply them to fractured CTs and decode to a prediction of the patient-specific healthy bone in standard coordinates. Our contributions include: i) a 3D-adapted STN for global spatial registration, ii) a comparative analysis of AEs for bone CT modeling, and iii) the extension of both to handle masked inputs for predictive generation of healthy bone structures. Project page: https://github.com/HongyouZhou/repair
Abstract:In this paper, we propose using deep neural architectures (i.e., vision transformers and ResNet) as heuristics for sequential decision-making in robotic manipulation problems. This formulation enables predicting the subset of objects that are relevant for completing a task. Such problems are often addressed by task and motion planning (TAMP) formulations combining symbolic reasoning and continuous motion planning. In essence, the action-object relationships are resolved for discrete, symbolic decisions that are used to solve manipulation motions (e.g., via nonlinear trajectory optimization). However, solving long-horizon tasks requires consideration of all possible action-object combinations which limits the scalability of TAMP approaches. To overcome this combinatorial complexity, we introduce a visual perception module integrated with a TAMP-solver. Given a task and an initial image of the scene, the learned model outputs the relevancy of objects to accomplish the task. By incorporating the predictions of the model into a TAMP formulation as a heuristic, the size of the search space is significantly reduced. Results show that our framework finds feasible solutions more efficiently when compared to a state-of-the-art TAMP solver.