Abstract:Role-based access control (RBAC) and hierarchical structures are foundational to how information flows and decisions are made within virtually all organizations. As the potential of Large Language Models (LLMs) to serve as unified knowledge repositories and intelligent assistants in enterprise settings becomes increasingly apparent, a critical, yet under explored, challenge emerges: \textit{can these models reliably understand and operate within the complex, often nuanced, constraints imposed by organizational hierarchies and associated permissions?} Evaluating this crucial capability is inherently difficult due to the proprietary and sensitive nature of real-world corporate data and access control policies. We introduce a synthetic yet representative \textbf{OrgAccess} benchmark consisting of 40 distinct types of permissions commonly relevant across different organizational roles and levels. We further create three types of permissions: 40,000 easy (1 permission), 10,000 medium (3-permissions tuple), and 20,000 hard (5-permissions tuple) to test LLMs' ability to accurately assess these permissions and generate responses that strictly adhere to the specified hierarchical rules, particularly in scenarios involving users with overlapping or conflicting permissions. Our findings reveal that even state-of-the-art LLMs struggle significantly to maintain compliance with role-based structures, even with explicit instructions, with their performance degrades further when navigating interactions involving two or more conflicting permissions. Specifically, even \textbf{GPT-4.1 only achieves an F1-Score of 0.27 on our hardest benchmark}. This demonstrates a critical limitation in LLMs' complex rule following and compositional reasoning capabilities beyond standard factual or STEM-based benchmarks, opening up a new paradigm for evaluating their fitness for practical, structured environments.
Abstract:Quantifying the value of data within a machine learning workflow can play a pivotal role in making more strategic decisions in machine learning initiatives. The existing Shapley value based frameworks for data valuation in machine learning are computationally expensive as they require considerable amount of repeated training of the model to obtain the Shapley value. In this paper, we introduce an efficient data valuation framework EcoVal, to estimate the value of data for machine learning models in a fast and practical manner. Instead of directly working with individual data sample, we determine the value of a cluster of similar data points. This value is further propagated amongst all the member cluster points. We show that the overall data value can be determined by estimating the intrinsic and extrinsic value of each data. This is enabled by formulating the performance of a model as a \textit{production function}, a concept which is popularly used to estimate the amount of output based on factors like labor and capital in a traditional free economic market. We provide a formal proof of our valuation technique and elucidate the principles and mechanisms that enable its accelerated performance. We demonstrate the real-world applicability of our method by showcasing its effectiveness for both in-distribution and out-of-sample data. This work addresses one of the core challenges of efficient data valuation at scale in machine learning models.