Abstract:Federated Active Learning (FAL) seeks to reduce the burden of annotation under the realistic constraints of federated learning by leveraging Active Learning (AL). As FAL settings make it more expensive to obtain ground truth labels, FAL strategies that work well in low-budget regimes, where the amount of annotation is very limited, are needed. In this work, we investigate the effectiveness of TypiClust, a successful low-budget AL strategy, in low-budget FAL settings. Our empirical results show that TypiClust works well even in low-budget FAL settings contrasted with relatively low performances of other methods, although these settings present additional challenges, such as data heterogeneity, compared to AL. In addition, we show that FAL settings cause distribution shifts in terms of typicality, but TypiClust is not very vulnerable to the shifts. We also analyze the sensitivity of TypiClust to feature extraction methods, and it suggests a way to perform FAL even in limited data situations.
Abstract:The growing amount of data and advances in data science have created a need for a new kind of cloud platform that provides users with flexibility, strong security, and the ability to couple with supercomputers and edge devices through high-performance networks. We have built such a nation-wide cloud platform, called "mdx" to meet this need. The mdx platform's virtualization service, jointly operated by 9 national universities and 2 national research institutes in Japan, launched in 2021, and more features are in development. Currently mdx is used by researchers in a wide variety of domains, including materials informatics, geo-spatial information science, life science, astronomical science, economics, social science, and computer science. This paper provides an the overview of the mdx platform, details the motivation for its development, reports its current status, and outlines its future plans.