Abstract:Local explanation methods such as LIME (Ribeiro et al., 2016) remain fundamental to trustworthy AI, yet their application to NLP is limited by a reliance on random token masking. These heuristic perturbations frequently generate semantically invalid, out-of-distribution inputs that weaken the fidelity of local surrogate models. While recent generative approaches such as LLiMe (Angiulli et al., 2025b) attempt to mitigate this by employing Large Language Models for neighborhood generation, they rely on unconstrained paraphrasing that introduces confounding variables, making it difficult to isolate specific feature contributions. We introduce LIME-LLM, a framework that replaces random noise with hypothesis-driven, controlled perturbations. By enforcing a strict "Single Mask-Single Sample" protocol and employing distinct neutral infill and boundary infill strategies, LIME-LLM constructs fluent, on-manifold neighborhoods that rigorously isolate feature effects. We evaluate our method against established baselines (LIME, SHAP, Integrated Gradients) and the generative LLiMe baseline across three diverse benchmarks: CoLA, SST-2, and HateXplain using human-annotated rationales as ground truth. Empirical results demonstrate that LIME-LLM establishes a new benchmark for black-box NLP explainability, achieving significant improvements in local explanation fidelity compared to both traditional perturbation-based methods and recent generative alternatives.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:A physics-constrained Gaussian Process regression framework is developed for predicting shocked material states along the Hugoniot curve using data from a small number of shockwave simulations. The proposed Gaussian process employs a probabilistic Taylor series expansion in conjunction with the Rankine-Hugoniot jump conditions between the various shocked material states to construct a thermodynamically consistent covariance function. This leads to the formulation of an optimization problem over a small number of interpretable hyperparameters and enables the identification of regime transitions, from a leading elastic wave to trailing plastic and phase transformation waves. This work is motivated by the need to investigate shock-driven material response for materials discovery and for offering mechanistic insights in regimes where experimental characterizations and simulations are costly. The proposed methodology relies on large-scale molecular dynamics which are an accurate but expensive computational alternative to experiments. Under these constraints, the proposed methodology establishes Hugoniot curves from a limited number of molecular dynamics simulations. We consider silicon carbide as a representative material and atomic-level simulations are performed using a reverse ballistic approach together with appropriate interatomic potentials. The framework reproduces the Hugoniot curve with satisfactory accuracy while also quantifying the uncertainty in the predictions using the Gaussian Process posterior.
Abstract:Physics-informed polynomial chaos expansions (PC$^2$) provide an efficient physically constrained surrogate modeling framework by embedding governing equations and other physical constraints into the standard data-driven polynomial chaos expansions (PCE) and solving via the Karush-Kuhn-Tucker (KKT) conditions. This approach improves the physical interpretability of surrogate models while achieving high computational efficiency and accuracy. However, the performance and efficiency of PC$^2$ can still be degraded with high-dimensional parameter spaces, limited data availability, or unrepresentative training data. To address this problem, this study explores two complementary enhancements to the PC$^2$ framework. First, a numerically efficient constrained optimization solver, straightforward updating of Lagrange multipliers (SULM), is adopted as an alternative to the conventional KKT solver. The SULM method significantly reduces computational cost when solving physically constrained problems with high-dimensionality and derivative boundary conditions that require a large number of virtual points. Second, a D-optimal sampling strategy is utilized to select informative virtual points to improve the stability and achieve the balance of accuracy and efficiency of the PC$^2$. The proposed methods are integrated into the PC$^2$ framework and evaluated through numerical examples of representative physical systems governed by ordinary or partial differential equations. The results demonstrate that the enhanced PC$^2$ has better comprehensive capability than standard PC$^2$, and is well-suited for high-dimensional uncertainty quantification tasks.
Abstract:Operator learning (OL) has emerged as a powerful tool in scientific machine learning (SciML) for approximating mappings between infinite-dimensional functional spaces. One of its main applications is learning the solution operator of partial differential equations (PDEs). While much of the progress in this area has been driven by deep neural network-based approaches such as Deep Operator Networks (DeepONet) and Fourier Neural Operator (FNO), recent work has begun to explore traditional machine learning methods for OL. In this work, we introduce polynomial chaos expansion (PCE) as an OL method. PCE has been widely used for uncertainty quantification (UQ) and has recently gained attention in the context of SciML. For OL, we establish a mathematical framework that enables PCE to approximate operators in both purely data-driven and physics-informed settings. The proposed framework reduces the task of learning the operator to solving a system of equations for the PCE coefficients. Moreover, the framework provides UQ by simply post-processing the PCE coefficients, without any additional computational cost. We apply the proposed method to a diverse set of PDE problems to demonstrate its capabilities. Numerical results demonstrate the strong performance of the proposed method in both OL and UQ tasks, achieving excellent numerical accuracy and computational efficiency.




Abstract:Differential-Algebraic Equations (DAEs) describe the temporal evolution of systems that obey both differential and algebraic constraints. Of particular interest are systems that contain implicit relationships between their components, such as conservation relationships. Here, we present Neural Differential-Algebraic Equations (NDAEs) suitable for data-driven modeling of DAEs. This methodology is built upon the concept of the Universal Differential Equation; that is, a model constructed as a system of Neural Ordinary Differential Equations informed by theory from particular science domains. In this work, we show that the proposed NDAEs abstraction is suitable for relevant system-theoretic data-driven modeling tasks. Presented examples include (i) the inverse problem of tank-manifold dynamics and (ii) discrepancy modeling of a network of pumps, tanks, and pipes. Our experiments demonstrate the proposed method's robustness to noise and extrapolation ability to (i) learn the behaviors of the system components and their interaction physics and (ii) disambiguate between data trends and mechanistic relationships contained in the system.
Abstract:We present a novel physics-constrained polynomial chaos expansion as a surrogate modeling method capable of performing both scientific machine learning (SciML) and uncertainty quantification (UQ) tasks. The proposed method possesses a unique capability: it seamlessly integrates SciML into UQ and vice versa, which allows it to quantify the uncertainties in SciML tasks effectively and leverage SciML for improved uncertainty assessment during UQ-related tasks. The proposed surrogate model can effectively incorporate a variety of physical constraints, such as governing partial differential equations (PDEs) with associated initial and boundary conditions constraints, inequality-type constraints (e.g., monotonicity, convexity, non-negativity, among others), and additional a priori information in the training process to supplement limited data. This ensures physically realistic predictions and significantly reduces the need for expensive computational model evaluations to train the surrogate model. Furthermore, the proposed method has a built-in uncertainty quantification (UQ) feature to efficiently estimate output uncertainties. To demonstrate the effectiveness of the proposed method, we apply it to a diverse set of problems, including linear/non-linear PDEs with deterministic and stochastic parameters, data-driven surrogate modeling of a complex physical system, and UQ of a stochastic system with parameters modeled as random fields.
Abstract:We propose a framework for applying reinforcement learning to contextual two-stage stochastic optimization and apply this framework to the problem of energy market bidding of an off-shore wind farm. Reinforcement learning could potentially be used to learn close to optimal solutions for first stage variables of a two-stage stochastic program under different contexts. Under the proposed framework, these solutions would be learned without having to solve the full two-stage stochastic program. We present initial results of training using the DDPG algorithm and present intended future steps to improve performance.
Abstract:Surrogate modeling of costly mathematical models representing physical systems is challenging since it is typically not possible to create a large experimental design. Thus, it is beneficial to constrain the approximation to adhere to the known physics of the model. This paper presents a novel methodology for the construction of physics-informed polynomial chaos expansions (PCE) that combines the conventional experimental design with additional constraints from the physics of the model. Physical constraints investigated in this paper are represented by a set of differential equations and specified boundary conditions. A computationally efficient means for construction of physically constrained PCE is proposed and compared to standard sparse PCE. It is shown that the proposed algorithms lead to superior accuracy of the approximation and does not add significant computational burden. Although the main purpose of the proposed method lies in combining data and physical constraints, we show that physically constrained PCEs can be constructed from differential equations and boundary conditions alone without requiring evaluations of the original model. We further show that the constrained PCEs can be easily applied for uncertainty quantification through analytical post-processing of a reduced PCE filtering out the influence of all deterministic space-time variables. Several deterministic examples of increasing complexity are provided and the proposed method is applied for uncertainty quantification.
Abstract:Numerical simulations of high energy-density experiments require equation of state (EOS) models that relate a material's thermodynamic state variables -- specifically pressure, volume/density, energy, and temperature. EOS models are typically constructed using a semi-empirical parametric methodology, which assumes a physics-informed functional form with many tunable parameters calibrated using experimental/simulation data. Since there are inherent uncertainties in the calibration data (parametric uncertainty) and the assumed functional EOS form (model uncertainty), it is essential to perform uncertainty quantification (UQ) to improve confidence in the EOS predictions. Model uncertainty is challenging for UQ studies since it requires exploring the space of all possible physically consistent functional forms. Thus, it is often neglected in favor of parametric uncertainty, which is easier to quantify without violating thermodynamic laws. This work presents a data-driven machine learning approach to constructing EOS models that naturally captures model uncertainty while satisfying the necessary thermodynamic consistency and stability constraints. We propose a novel framework based on physics-informed Gaussian process regression (GPR) that automatically captures total uncertainty in the EOS and can be jointly trained on both simulation and experimental data sources. A GPR model for the shock Hugoniot is derived and its uncertainties are quantified using the proposed framework. We apply the proposed model to learn the EOS for the diamond solid state of carbon, using both density functional theory data and experimental shock Hugoniot data to train the model and show that the prediction uncertainty reduces by considering the thermodynamic constraints.