Abstract:A crucial consideration when developing and deploying Large Language Models (LLMs) is the human values to which these models are aligned. In the constitutional framework of alignment models are aligned to a set of principles (the constitution) specified in natural language. However, it is unclear how to fairly determine this constitution with widespread stakeholder input. In this work we propose Grounded Constitutional AI (GCAI), a unified framework for generating constitutions of principles that are representative of both users' general expectations toward AI (general principles) and their interaction-time preferences (contextual principles). We extend the Inverse Constitutional AI (ICAI) approach to generate contextual principles from human preference annotation data by leveraging human-provided \textit{reasons} for their preferences. We supplement these contextual principles with general principles surfaced from user statements of \textit{values} regarding AI. We show that a constitution generated by GCAI is preferred by humans over one generated through ICAI both personally, and for widespread use in governing AI behavior. Additionally participants consider the GCAI constitution to be more morally grounded, coherent, and pluralistic.
Abstract:The constitutional framework of alignment aims to align large language models (LLMs) with value-laden principles written in natural language (such as to avoid using biased language). Prior work has focused on parameter fine-tuning techniques, such as reinforcement learning from human feedback (RLHF), to instill these principles. However, these approaches are computationally demanding, require careful engineering and tuning, and often require difficult-to-obtain human annotation data. We propose \textsc{reflect}, an inference-time framework for constitutional alignment that does not require any training or data, providing a plug-and-play approach for aligning an instruction-tuned model to a set of principles. \textsc{reflect} operates entirely in-context, combining a (i) constitution-conditioned base response with post-generation (ii) self-evaluation, (iii)(a) self-critique, and (iii)(b) final revision. \textsc{reflect}'s technique of explicit in-context reasoning over principles during post-generation outperforms standard few-shot prompting and provides transparent reasoning traces. Our results demonstrate that \textsc{reflect} significantly improves LLM conformance to diverse and complex principles, including principles quite distinct from those emphasized in the model's original parameter fine-tuning, without sacrificing factual reasoning. \textsc{reflect} is particularly effective at reducing the rate of rare but significant violations of principles, thereby improving safety and robustness in the tail end of the distribution of generations. Finally, we show that \textsc{reflect} naturally generates useful training data for traditional parameter fine-tuning techniques, allowing for efficient scaling and the reduction of inference-time computational overhead in long-term deployment scenarios.