Abstract:Diagnostic processes for complex cyber-physical systems often require extensive prior knowledge in the form of detailed system models or comprehensive training data. However, obtaining such information poses a significant challenge. To address this issue, we present a new diagnostic approach that operates with minimal prior knowledge, requiring only a basic understanding of subsystem relationships and data from nominal operations. Our method combines a neural network-based symptom generator, which employs subsystem-level anomaly detection, with a new graph diagnosis algorithm that leverages minimal causal relationship information between subsystems-information that is typically available in practice. Our experiments with fully controllable simulated datasets show that our method includes the true causal component in its diagnosis set for 82 p.c. of all cases while effectively reducing the search space in 73 p.c. of the scenarios. Additional tests on the real-world Secure Water Treatment dataset showcase the approach's potential for practical scenarios. Our results thus highlight our approach's potential for practical applications with large and complex cyber-physical systems where limited prior knowledge is available.
Abstract:Consistency-based diagnosis is an established approach to diagnose technical applications, but suffers from significant modeling efforts, especially for dynamic multi-modal time series. Machine learning seems to be an obvious solution, which becomes less obvious when looking at details: Which notion of consistency can be used? If logical calculi are still to be used, how can dynamic time series be transferred into the discrete world? This paper presents the methodology Discret2Di for automated learning of logical expressions for consistency-based diagnosis. While these logical calculi have advantages by providing a clear notion of consistency, they have the key problem of relying on a discretization of the dynamic system. The solution presented combines machine learning from both the time series and the symbolic domain to automate the learning of logical rules for consistency-based diagnosis.