Abstract:Diagnostic processes for complex cyber-physical systems often require extensive prior knowledge in the form of detailed system models or comprehensive training data. However, obtaining such information poses a significant challenge. To address this issue, we present a new diagnostic approach that operates with minimal prior knowledge, requiring only a basic understanding of subsystem relationships and data from nominal operations. Our method combines a neural network-based symptom generator, which employs subsystem-level anomaly detection, with a new graph diagnosis algorithm that leverages minimal causal relationship information between subsystems-information that is typically available in practice. Our experiments with fully controllable simulated datasets show that our method includes the true causal component in its diagnosis set for 82 p.c. of all cases while effectively reducing the search space in 73 p.c. of the scenarios. Additional tests on the real-world Secure Water Treatment dataset showcase the approach's potential for practical scenarios. Our results thus highlight our approach's potential for practical applications with large and complex cyber-physical systems where limited prior knowledge is available.
Abstract:Empirical research plays a fundamental role in the machine learning domain. At the heart of impactful empirical research lies the development of clear research hypotheses, which then shape the design of experiments. The execution of experiments must be carried out with precision to ensure reliable results, followed by statistical analysis to interpret these outcomes. This process is key to either supporting or refuting initial hypotheses. Despite its importance, there is a high variability in research practices across the machine learning community and no uniform understanding of quality criteria for empirical research. To address this gap, we propose a model for the empirical research process, accompanied by guidelines to uphold the validity of empirical research. By embracing these recommendations, greater consistency, enhanced reliability and increased impact can be achieved.