Abstract:Serving Large Language Models (LLMs) at scale requires meeting strict Service Level Objectives (SLOs) under severe computational and memory constraints. Nevertheless, traditional caching strategies fall short: exact-matching and prefix caches neglect query semantics, while state-of-the-art semantic caches remain confined to traditional intuitions, offering little conceptual departure. Building on this, we present SISO, a semantic caching system that redefines efficiency for LLM serving. SISO introduces centroid-based caching to maximize coverage with minimal memory, locality-aware replacement to preserve high-value entries, and dynamic thresholding to balance accuracy and latency under varying workloads. Across diverse datasets, SISO delivers up to 1.71$\times$ higher hit ratios and consistently stronger SLO attainment compared to state-of-the-art systems.
Abstract:To ensure a balance between open access to justice and personal data protection, the South Korean judiciary mandates the de-identification of court judgments before they can be publicly disclosed. However, the current de-identification process is inadequate for handling court judgments at scale while adhering to strict legal requirements. Additionally, the legal definitions and categorizations of personal identifiers are vague and not well-suited for technical solutions. To tackle these challenges, we propose a de-identification framework called Thunder-DeID, which aligns with relevant laws and practices. Specifically, we (i) construct and release the first Korean legal dataset containing annotated judgments along with corresponding lists of entity mentions, (ii) introduce a systematic categorization of Personally Identifiable Information (PII), and (iii) develop an end-to-end deep neural network (DNN)-based de-identification pipeline. Our experimental results demonstrate that our model achieves state-of-the-art performance in the de-identification of court judgments.