Abstract:Due to the exponential rise in IoT-based botnet attacks, researchers have explored various advanced techniques for both dimensionality reduction and attack detection to enhance IoT security. Among these, Variational Autoencoders (VAE), Vision Transformers (ViT), and Graph Neural Networks (GNN), including Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT), have garnered significant research attention in the domain of attack detection. This study evaluates the effectiveness of four state-of-the-art deep learning architectures for IoT botnet detection: a VAE encoder with a Multi-Layer Perceptron (MLP), a VAE encoder with a GCN, a VAE encoder with a GAT, and a ViT encoder with an MLP. The evaluation is conducted on a widely studied IoT benchmark dataset--the N-BaIoT dataset for both binary and multiclass tasks. For the binary classification task, all models achieved over 99.93% in accuracy, recall, precision, and F1-score, with no notable differences in performance. In contrast, for the multiclass classification task, GNN-based models showed significantly lower performance compared to VAE-MLP and ViT-MLP, with accuracies of 86.42%, 89.46%, 99.72%, and 98.38% for VAE-GCN, VAE-GAT, VAE-MLP, and ViT-MLP, respectively.
Abstract:With the rise of IoT-based botnet attacks, researchers have explored various learning models for detection, including traditional machine learning, deep learning, and hybrid approaches. A key advancement involves deploying attention mechanisms to capture long-term dependencies among features, significantly improving detection accuracy. However, most models treat attack instances independently, overlooking inter-instance relationships. Graph Neural Networks (GNNs) address this limitation by learning an embedding space via iterative message passing where similar instances are placed closer based on node features and relationships, enhancing classification performance. To further improve detection, attention mechanisms have been embedded within GNNs, leveraging both long-range dependencies and inter-instance connections. However, transforming the high dimensional IoT attack datasets into a graph structured dataset poses challenges, such as large graph structures leading computational overhead. To mitigate this, this paper proposes a framework that first reduces dimensionality of the NetFlow-based IoT attack dataset before transforming it into a graph dataset. We evaluate three dimension reduction techniques--Variational Autoencoder (VAE-encoder), classical autoencoder (AE-encoder), and Principal Component Analysis (PCA)--and compare their effects on a Graph Attention neural network (GAT) model for botnet attack detection
Abstract:The Internet of Things (IoT) technology has rapidly gained popularity with applications widespread across a variety of industries. However, IoT devices have been recently serving as a porous layer for many malicious attacks to both personal and enterprise information systems with the most famous attacks being botnet-related attacks. The work in this study leveraged Variational Auto-encoder (VAE) and cost-sensitive learning to develop lightweight, yet effective, models for IoT-botnet detection. The aim is to enhance the detection of minority class attack traffic instances which are often missed by machine learning models. The proposed approach is evaluated on a multi-class problem setting for the detection of traffic categories on highly imbalanced datasets. The performance of two deep learning models including the standard feed forward deep neural network (DNN), and Bidirectional-LSTM (BLSTM) was evaluated and both recorded commendable results in terms of accuracy, precision, recall and F1-score for all traffic classes.
Abstract:AI models have garnered significant research attention towards predictive task automation. However, a stationary training environment is an underlying assumption for most models and such models simply do not work on non-stationary data since a stationary relationship is learned. The existing solutions propose making data stationary prior to model training and evaluation. This leads to loss of trend and seasonal patterns which are vital components for learning temporal dependencies of the system under study. This research aims to address this limitation by proposing a method for enforcing stationary behaviour within the latent space while preserving trend and seasonal information. The method deploys techniques including Differencing, Time-series decomposition, and Latent Space Arithmetic (LSA), to learn information vital for efficient approximation of trend and seasonal information which is then stored as embeddings within the latent space of a Variational Autoencoder (VAE). The approach's ability to preserve trend and seasonal information was evaluated on two time-series non-stationary datasets. For predictive performance evaluation, four deep learning models were trained on the latent vector representations of the datasets after application of the proposed method and all models produced competitive results in comparison with state-of-the-art techniques using RMSE as the performance metric.
Abstract:Despite the demonstrated effectiveness of transformer models in NLP, and image and video classification, the available tools for extracting features from captured IoT network flow packets fail to capture sequential patterns in addition to the absence of spatial patterns consequently limiting transformer model application. This work introduces a novel preprocessing method to adapt transformer models, the vision transformer (ViT) in particular, for IoT botnet attack detection using network flow packets. The approach involves feature extraction from .pcap files and transforming each instance into a 1-channel 2D image shape, enabling ViT-based classification. Also, the ViT model was enhanced to allow use any classifier besides Multilayer Perceptron (MLP) that was deployed in the initial ViT paper. Models including the conventional feed forward Deep Neural Network (DNN), LSTM and Bidirectional-LSTM (BLSTM) demonstrated competitive performance in terms of precision, recall, and F1-score for multiclass-based attack detection when evaluated on two IoT attack datasets.
Abstract:The rapid evolution of Internet of Things (IoT) technology has led to a significant increase in the number of IoT devices, applications, and services. This surge in IoT devices, along with their widespread presence, has made them a prime target for various cyber-attacks, particularly through IoT botnets. As a result, security has become a major concern within the IoT ecosystem. This study focuses on investigating how the latent dimension impacts the performance of different deep learning classifiers when trained on latent vector representations of the train dataset. The primary objective is to compare the outcomes of these models when encoder components from two cutting-edge architectures: the Vision Transformer (ViT) and the Variational Auto-Encoder (VAE) are utilized to project the high dimensional train dataset to the learned low dimensional latent space. The encoder components are employed to project high-dimensional structured .csv IoT botnet traffic datasets to various latent sizes. Evaluated on N-BaIoT and CICIoT2022 datasets, findings reveal that VAE-encoder based dimension reduction outperforms ViT-encoder based dimension reduction for both datasets in terms of four performance metrics including accuracy, precision, recall, and F1-score for all models which can be attributed to absence of spatial patterns in the datasets the ViT model attempts to learn and extract from image instances.
Abstract:Safety is the main concern in the aviation industry, where even minor operational issues can lead to serious consequences. This study addresses the need for comprehensive aviation accident analysis by leveraging natural language processing (NLP) and advanced AI models to classify the phase of flight from unstructured aviation accident analysis narratives. The research aims to determine whether the phase of flight can be inferred from narratives of post-accident events using NLP techniques. The classification performance of various deep learning models was evaluated. For single RNN-based models, LSTM achieved an accuracy of 63%, precision 60%, and recall 61%. BiLSTM recorded an accuracy of 64%, precision 63%, and a recall of 64%. GRU exhibited balanced performance with an accuracy and recall of 60% and a precision of 63%. Joint RNN-based models further enhanced predictive capabilities. GRU-LSTM, LSTM-BiLSTM, and GRU-BiLSTM demonstrated accuracy rates of 62%, 67%, and 60%, respectively, showcasing the benefits of combining these architectures. To provide a comprehensive overview of model performance, single and combined models were compared in terms of the various metrics. These results underscore the models' capacity to classify the phase of flight from raw text narratives, equipping aviation industry stakeholders with valuable insights for proactive decision-making. Therefore, this research signifies a substantial advancement in the application of NLP and deep learning models to enhance aviation safety.
Abstract:Aviation safety is paramount, demanding precise analysis of safety occurrences during different flight phases. This study employs Natural Language Processing (NLP) and Deep Learning models, including LSTM, CNN, Bidirectional LSTM (BLSTM), and simple Recurrent Neural Networks (sRNN), to classify flight phases in safety reports from the Australian Transport Safety Bureau (ATSB). The models exhibited high accuracy, precision, recall, and F1 scores, with LSTM achieving the highest performance of 87%, 88%, 87%, and 88%, respectively. This performance highlights their effectiveness in automating safety occurrence analysis. The integration of NLP and Deep Learning technologies promises transformative enhancements in aviation safety analysis, enabling targeted safety measures and streamlined report handling.
Abstract:Aviation safety is a global concern, requiring detailed investigations into incidents to understand contributing factors comprehensively. This study uses the National Transportation Safety Board (NTSB) dataset. It applies advanced natural language processing (NLP) techniques, including Latent Dirichlet Allocation (LDA), Non-Negative Matrix Factorization (NMF), Latent Semantic Analysis (LSA), Probabilistic Latent Semantic Analysis (pLSA), and K-means clustering. The main objectives are identifying latent themes, exploring semantic relationships, assessing probabilistic connections, and cluster incidents based on shared characteristics. This research contributes to aviation safety by providing insights into incident narratives and demonstrating the versatility of NLP and topic modelling techniques in extracting valuable information from complex datasets. The results, including topics identified from various techniques, provide an understanding of recurring themes. Comparative analysis reveals that LDA performed best with a coherence value of 0.597, pLSA of 0.583, LSA of 0.542, and NMF of 0.437. K-means clustering further reveals commonalities and unique insights into incident narratives. In conclusion, this study uncovers latent patterns and thematic structures within incident narratives, offering a comparative analysis of multiple-topic modelling techniques. Future research avenues include exploring temporal patterns, incorporating additional datasets, and developing predictive models for early identification of safety issues. This research lays the groundwork for enhancing the understanding and improvement of aviation safety by utilising the wealth of information embedded in incident narratives.
Abstract:The air transport system recognizes the criticality of safety, as even minor anomalies can have severe consequences. Reporting accidents and incidents play a vital role in identifying their causes and proposing safety recommendations. However, the narratives describing pre-accident events are presented in unstructured text that is not easily understood by computer systems. Classifying and categorizing safety occurrences based on these narratives can support informed decision-making by aviation industry stakeholders. In this study, researchers applied natural language processing (NLP) and artificial intelligence (AI) models to process text narratives to classify the flight phases of safety occurrences. The classification performance of two deep learning models, ResNet and sRNN was evaluated, using an initial dataset of 27,000 safety occurrence reports from the NTSB. The results demonstrated good performance, with both models achieving an accuracy exceeding 68%, well above the random guess rate of 14% for a seven-class classification problem. The models also exhibited high precision, recall, and F1 scores. The sRNN model greatly outperformed the simplified ResNet model architecture used in this study. These findings indicate that NLP and deep learning models can infer the flight phase from raw text narratives, enabling effective analysis of safety occurrences.