Abstract:Offline meta-reinforcement learning (OMRL) combines the strengths of learning from diverse datasets in offline RL with the adaptability to new tasks of meta-RL, promising safe and efficient knowledge acquisition by RL agents. However, OMRL still suffers extrapolation errors due to out-of-distribution (OOD) actions, compromised by broad task distributions and Markov Decision Process (MDP) ambiguity in meta-RL setups. Existing research indicates that the generalization of the $Q$ network affects the extrapolation error in offline RL. This paper investigates this relationship by decomposing the $Q$ value into feature and weight components, observing that while decomposition enhances adaptability and convergence in the case of high-quality data, it often leads to policy degeneration or collapse in complex tasks. We observe that decomposed $Q$ values introduce a large estimation bias when the feature encounters OOD samples, a phenomenon we term ''feature overgeneralization''. To address this issue, we propose FLORA, which identifies OOD samples by modeling feature distributions and estimating their uncertainties. FLORA integrates a return feedback mechanism to adaptively adjust feature components. Furthermore, to learn precise task representations, FLORA explicitly models the complex task distribution using a chain of invertible transformations. We theoretically and empirically demonstrate that FLORA achieves rapid adaptation and meta-policy improvement compared to baselines across various environments.
Abstract:The real world is inherently non-stationary, with ever-changing factors, such as weather conditions and traffic flows, making it challenging for agents to adapt to varying environmental dynamics. Non-Stationary Reinforcement Learning (NSRL) addresses this challenge by training agents to adapt rapidly to sequences of distinct Markov Decision Processes (MDPs). However, existing NSRL approaches often focus on tasks with regularly evolving patterns, leading to limited adaptability in highly dynamic settings. Inspired by the success of Wavelet analysis in time series modeling, specifically its ability to capture signal trends at multiple scales, we propose WISDOM to leverage wavelet-domain predictive task representations to enhance NSRL. WISDOM captures these multi-scale features in evolving MDP sequences by transforming task representation sequences into the wavelet domain, where wavelet coefficients represent both global trends and fine-grained variations of non-stationary changes. In addition to the auto-regressive modeling commonly employed in time series forecasting, we devise a wavelet temporal difference (TD) update operator to enhance tracking and prediction of MDP evolution. We theoretically prove the convergence of this operator and demonstrate policy improvement with wavelet task representations. Experiments on diverse benchmarks show that WISDOM significantly outperforms existing baselines in both sample efficiency and asymptotic performance, demonstrating its remarkable adaptability in complex environments characterized by non-stationary and stochastically evolving tasks.