Abstract:Recent advances have shown success in eliciting strong reasoning abilities in multimodal large language models (MLLMs) through rule-based reinforcement learning (RL) with outcome rewards. However, this paradigm typically lacks supervision over the thinking process leading to the final outcome.As a result, the model may learn sub-optimal reasoning strategies, which can hinder its generalization ability. In light of this, we propose SophiaVL-R1, as an attempt to add reward signals for the thinking process in this paradigm. To achieve this, we first train a thinking reward model that evaluates the quality of the entire thinking process. Given that the thinking reward may be unreliable for certain samples due to reward hacking, we propose the Trust-GRPO method, which assigns a trustworthiness weight to the thinking reward during training. This weight is computed based on the thinking reward comparison of responses leading to correct answers versus incorrect answers, helping to mitigate the impact of potentially unreliable thinking rewards. Moreover, we design an annealing training strategy that gradually reduces the thinking reward over time, allowing the model to rely more on the accurate rule-based outcome reward in later training stages. Experiments show that our SophiaVL-R1 surpasses a series of reasoning MLLMs on various benchmarks (e.g., MathVisita, MMMU), demonstrating strong reasoning and generalization capabilities. Notably, our SophiaVL-R1-7B even outperforms LLaVA-OneVision-72B on most benchmarks, despite the latter having 10 times more parameters. All code, models, and datasets are made publicly available at https://github.com/kxfan2002/SophiaVL-R1.
Abstract:Next Point-of-interest (POI) recommendation provides valuable suggestions for users to explore their surrounding environment. Existing studies rely on building recommendation models from large-scale users' check-in data, which is task-specific and needs extensive computational resources. Recently, the pretrained large language models (LLMs) have achieved significant advancements in various NLP tasks and have also been investigated for recommendation scenarios. However, the generalization abilities of LLMs still are unexplored to address the next POI recommendations, where users' geographical movement patterns should be extracted. Although there are studies that leverage LLMs for next-item recommendations, they fail to consider the geographical influence and sequential transitions. Hence, they cannot effectively solve the next POI recommendation task. To this end, we design novel prompting strategies and conduct empirical studies to assess the capability of LLMs, e.g., ChatGPT, for predicting a user's next check-in. Specifically, we consider several essential factors in human movement behaviors, including user geographical preference, spatial distance, and sequential transitions, and formulate the recommendation task as a ranking problem. Through extensive experiments on two widely used real-world datasets, we derive several key findings. Empirical evaluations demonstrate that LLMs have promising zero-shot recommendation abilities and can provide accurate and reasonable predictions. We also reveal that LLMs cannot accurately comprehend geographical context information and are sensitive to the order of presentation of candidate POIs, which shows the limitations of LLMs and necessitates further research on robust human mobility reasoning mechanisms.