Abstract:Machine learning interatomic potentials (MLIPs) have proven to be wildly useful for molecular dynamics simulations, powering countless drug and materials discovery applications. However, MLIPs face two primary bottlenecks preventing them from reaching realistic simulation scales: inference time and memory consumption. In this work, we address both issues by challenging the long-held belief that the cutoff radius for the MLIP must be held to a fixed, constant value. For the first time, we introduce a dynamic cutoff formulation that still leads to stable, long timescale molecular dynamics simulation. In introducing the dynamic cutoff, we are able to induce sparsity onto the underlying atom graph by targeting a specific number of neighbors per atom, significantly reducing both memory consumption and inference time. We show the effectiveness of a dynamic cutoff by implementing it onto 4 state of the art MLIPs: MACE, Nequip, Orbv3, and TensorNet, leading to 2.26x less memory consumption and 2.04x faster inference time, depending on the model and atomic system. We also perform an extensive error analysis and find that the dynamic cutoff models exhibit minimal accuracy dropoff compared to their fixed cutoff counterparts on both materials and molecular datasets. All model implementations and training code will be fully open sourced.
Abstract:Many LLM-based open-ended search systems freeze the foundation model that proposes improvements to existing solutions, which may bottleneck long-run progress. Recent work has explored updating the proposal model at test time [arXiv:2511.23473], but the update strategy is still typically hand-specified. Therefore, this study investigated whether an LLM can use task feedback to decide how it should update its weights. For tractability, we focused on the simpler case where there is only one round of self-improvement, and restricted the update operator to self-supervised next token prediction (NTP), leaving the model freedom in choosing its training data and key NTP hyperparameters. Using the Self-Adapting Language Models (SEAL) [arXiv:2506.10943] framework as a testbed, we relaxed its fixed human template constraint and allowed the model to generate its own self-edit templates, thereby giving it more control over its training data and hyperparameters. Two variants were studied, differing in whether template generation was conditioned on a lightweight archive of past templates. In SEAL's Single-Passage Knowledge Incorporation setting with Qwen3-8B on SQuAD [arXiv:1606.05250], the no-archive variant performed comparably to the weaker "Implications" baseline, while the archive variant outperformed "Implications" and approached the strongest human-designed "Rewrite" baseline without surpassing it. Further analysis of collapse in the model's exploration revealed that a naive archive can confer some short-term robustness but can also accelerate homogenization, suggesting that explicit novelty pressure may be required to consistently advance beyond carefully optimized human strategies. Our code is available at https://github.com/cheongalc/search-self-edit-strategies .