Abstract:Heterogeneous morphological features and data imbalance pose significant challenges in rare thyroid carcinoma classification using ultrasound imaging. To address this issue, we propose a novel multitask learning framework, Channel-Spatial Attention Synergy Network (CSASN), which integrates a dual-branch feature extractor - combining EfficientNet for local spatial encoding and ViT for global semantic modeling, with a cascaded channel-spatial attention refinement module. A residual multiscale classifier and dynamically weighted loss function further enhance classification stability and accuracy. Trained on a multicenter dataset comprising more than 2000 patients from four clinical institutions, our framework leverages a residual multiscale classifier and dynamically weighted loss function to enhance classification stability and accuracy. Extensive ablation studies demonstrate that each module contributes significantly to model performance, particularly in recognizing rare subtypes such as FTC and MTC carcinomas. Experimental results show that CSASN outperforms existing single-stream CNN or Transformer-based models, achieving a superior balance between precision and recall under class-imbalanced conditions. This framework provides a promising strategy for AI-assisted thyroid cancer diagnosis.
Abstract:The traditional heat-load generation pattern of combined heat and power generators has become a problem leading to renewable energy source (RES) power curtailment in cold regions, motivating the proposal of a planning model for alternative heat sources. The model aims to identify non-dominant capacity allocation schemes for heat pumps, thermal energy storage, electric boilers, and combined storage heaters to construct a Pareto front, considering both economic and sustainable objectives. The integration of various heat sources from both generation and consumption sides enhances flexibility in utilization. The study introduces a novel optimization algorithm, the adaptive multi-objective Bayesian optimization (AMBO). Compared to other widely used multi-objective optimization algorithms, AMBO eliminates predefined parameters that may introduce subjectivity from planners. Beyond the algorithm, the proposed model incorporates a noise term to account for inevitable simulation deviations, enabling the identification of better-performing planning results that meet the unique requirements of cold regions. What's more, the characteristics of electric-thermal coupling scenarios are captured and reflected in the operation simulation model to make sure the simulation is close to reality. Numerical simulation verifies the superiority of the proposed approach in generating a more diverse and evenly distributed Pareto front in a sample-efficient manner, providing comprehensive and objective planning choices.