Abstract:Prompt engineering has emerged as a critical factor influencing large language model (LLM) performance, yet the impact of pragmatic elements such as linguistic tone and politeness remains underexplored, particularly across different model families. In this work, we propose a systematic evaluation framework to examine how interaction tone affects model accuracy and apply it to three recently released and widely available LLMs: GPT-4o mini (OpenAI), Gemini 2.0 Flash (Google DeepMind), and Llama 4 Scout (Meta). Using the MMMLU benchmark, we evaluate model performance under Very Friendly, Neutral, and Very Rude prompt variants across six tasks spanning STEM and Humanities domains, and analyze pairwise accuracy differences with statistical significance testing. Our results show that tone sensitivity is both model-dependent and domain-specific. Neutral or Very Friendly prompts generally yield higher accuracy than Very Rude prompts, but statistically significant effects appear only in a subset of Humanities tasks, where rude tone reduces accuracy for GPT and Llama, while Gemini remains comparatively tone-insensitive. When performance is aggregated across tasks within each domain, tone effects diminish and largely lose statistical significance. Compared with earlier researches, these findings suggest that dataset scale and coverage materially influence the detection of tone effects. Overall, our study indicates that while interaction tone can matter in specific interpretive settings, modern LLMs are broadly robust to tonal variation in typical mixed-domain use, providing practical guidance for prompt design and model selection in real-world deployments.




Abstract:This paper presents a novel visual-LiDAR odometry and mapping method with low-drift characteristics. The proposed method is based on two popular approaches, ORB-SLAM and A-LOAM, with monocular scale correction and visual-assisted LiDAR motion compensation modifications. The scale corrector calculates the proportion between the depth of image keypoints recovered by triangulation and that provided by LiDAR, using an outlier rejection process for accuracy improvement. Concerning LiDAR motion compensation, the visual odometry approach gives the initial guesses of LiDAR motions for better performance. This methodology is not only applicable to high-resolution LiDAR but can also adapt to low-resolution LiDAR. To evaluate the proposed SLAM system's robustness and accuracy, we conducted experiments on the KITTI Odometry and S3E datasets. Experimental results illustrate that our method significantly outperforms standalone ORB-SLAM2 and A-LOAM. Furthermore, regarding the accuracy of visual odometry with scale correction, our method performs similarly to the stereo-mode ORB-SLAM2.