Alert button
Picture for Hans Pabst

Hans Pabst

Alert button

Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures

Add code
Bookmark button
Alert button
Apr 25, 2023
Evangelos Georganas, Dhiraj Kalamkar, Kirill Voronin, Antonio Noack, Hans Pabst, Alexander Breuer, Alexander Heinecke

Figure 1 for Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures
Figure 2 for Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures
Figure 3 for Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures
Figure 4 for Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures
Viaarxiv icon

Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads

Add code
Bookmark button
Alert button
Apr 14, 2021
Evangelos Georganas, Dhiraj Kalamkar, Sasikanth Avancha, Menachem Adelman, Cristina Anderson, Alexander Breuer, Narendra Chaudhary, Abhisek Kundu, Vasimuddin Md, Sanchit Misra, Ramanarayan Mohanty, Hans Pabst, Barukh Ziv, Alexander Heinecke

Figure 1 for Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads
Figure 2 for Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads
Figure 3 for Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads
Figure 4 for Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads
Viaarxiv icon

Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case

Add code
Bookmark button
Alert button
Mar 18, 2021
Florian Rehm, Sofia Vallecorsa, Vikram Saletore, Hans Pabst, Adel Chaibi, Valeriu Codreanu, Kerstin Borras, Dirk Krücker

Figure 1 for Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Figure 2 for Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Figure 3 for Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Figure 4 for Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Viaarxiv icon

High-Performance Deep Learning via a Single Building Block

Add code
Bookmark button
Alert button
Jun 18, 2019
Evangelos Georganas, Kunal Banerjee, Dhiraj Kalamkar, Sasikanth Avancha, Anand Venkat, Michael Anderson, Greg Henry, Hans Pabst, Alexander Heinecke

Figure 1 for High-Performance Deep Learning via a Single Building Block
Figure 2 for High-Performance Deep Learning via a Single Building Block
Figure 3 for High-Performance Deep Learning via a Single Building Block
Figure 4 for High-Performance Deep Learning via a Single Building Block
Viaarxiv icon

Machine Learning in High Energy Physics Community White Paper

Add code
Bookmark button
Alert button
Jul 08, 2018
Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Figure 1 for Machine Learning in High Energy Physics Community White Paper
Figure 2 for Machine Learning in High Energy Physics Community White Paper
Figure 3 for Machine Learning in High Energy Physics Community White Paper
Viaarxiv icon