DI-ENS
Abstract:Certified machine unlearning can be achieved via noise injection leading to differential privacy guarantees, where noise is calibrated to worst-case sensitivity. Such conservative calibration often results in performance degradation, limiting practical applicability. In this work, we investigate an alternative approach based on adaptive per-instance noise calibration tailored to the individual contribution of each data point to the learned solution. This raises the following challenge: how can one establish formal unlearning guarantees when the mechanism depends on the specific point to be removed? To define individual data point sensitivities in noisy gradient dynamics, we consider the use of per-instance differential privacy. For ridge regression trained via Langevin dynamics, we derive high-probability per-instance sensitivity bounds, yielding certified unlearning with substantially less noise injection. We corroborate our theoretical findings through experiments in linear settings and provide further empirical evidence on the relevance of the approach in deep learning settings.