Abstract:We propose a novel master-slave architecture to solve the top-$K$ combinatorial multi-armed bandits problem with non-linear bandit feedback and diversity constraints, which, to the best of our knowledge, is the first combinatorial bandits setting considering diversity constraints under bandit feedback. Specifically, to efficiently explore the combinatorial and constrained action space, we introduce six slave models with distinguished merits to generate diversified samples well balancing rewards and constraints as well as efficiency. Moreover, we propose teacher learning based optimization and the policy co-training technique to boost the performance of the multiple slave models. The master model then collects the elite samples provided by the slave models and selects the best sample estimated by a neural contextual UCB-based network to make a decision with a trade-off between exploration and exploitation. Thanks to the elaborate design of slave models, the co-training mechanism among slave models, and the novel interactions between the master and slave models, our approach significantly surpasses existing state-of-the-art algorithms in both synthetic and real datasets for recommendation tasks. The code is available at: \url{https://github.com/huanghanchi/Master-slave-Algorithm-for-Top-K-Bandits}.
Abstract:We introduce CAMRL, the first curriculum-based asymmetric multi-task learning (AMTL) algorithm for dealing with multiple reinforcement learning (RL) tasks altogether. To mitigate the negative influence of customizing the one-off training order in curriculum-based AMTL, CAMRL switches its training mode between parallel single-task RL and asymmetric multi-task RL (MTRL), according to an indicator regarding the training time, the overall performance, and the performance gap among tasks. To leverage the multi-sourced prior knowledge flexibly and to reduce negative transfer in AMTL, we customize a composite loss with multiple differentiable ranking functions and optimize the loss through alternating optimization and the Frank-Wolfe algorithm. The uncertainty-based automatic adjustment of hyper-parameters is also applied to eliminate the need of laborious hyper-parameter analysis during optimization. By optimizing the composite loss, CAMRL predicts the next training task and continuously revisits the transfer matrix and network weights. We have conducted experiments on a wide range of benchmarks in multi-task RL, covering Gym-minigrid, Meta-world, Atari video games, vision-based PyBullet tasks, and RLBench, to show the improvements of CAMRL over the corresponding single-task RL algorithm and state-of-the-art MTRL algorithms. The code is available at: https://github.com/huanghanchi/CAMRL