Abstract:Recent advances in large reasoning models (LRMs) have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scenarios. Real-world queries in this domain are often ambiguous and require multi-hop reasoning across merchants and products, remaining challenging and not fully addressed. As the first comprehensive benchmark for agentic search in local life services, LocalSearchBench includes over 150,000 high-quality entries from various cities and business types. We construct 300 multi-hop QA tasks based on real user queries, challenging agents to understand questions and retrieve information in multiple steps. We also developed LocalPlayground, a unified environment integrating multiple tools for agent interaction. Experiments show that even state-of-the-art LRMs struggle on LocalSearchBench: the best model (DeepSeek-V3.1) achieves only 34.34% correctness, and most models have issues with completeness (average 77.33%) and faithfulness (average 61.99%). This highlights the need for specialized benchmarks and domain-specific agent training in local life services. Code, Benchmark, and Leaderboard are available at localsearchbench.github.io.




Abstract:Atomicity violations in interrupt-driven programs pose a significant threat to software safety in critical systems. These violations occur when the execution sequence of operations on shared resources is disrupted by asynchronous interrupts. Detecting atomicity violations is challenging due to the vast program state space, application-level code dependencies, and complex domain-specific knowledge. We propose Clover, a hybrid framework that integrates static analysis with large language model (LLM) agents to detect atomicity violations in real-world programs. Clover first performs static analysis to extract critical code snippets and operation information. It then initiates a multi-agent process, where the expert agent leverages domain-specific knowledge to detect atomicity violations, which are subsequently validated by the judge agent. Evaluations on RaceBench 2.1, SV-COMP, and RWIP demonstrate that Clover achieves a precision/recall of 92.3%/86.6%, outperforming existing approaches by 27.4-118.2% on F1-score.