Abstract:Embodied navigation demands comprehensive scene understanding and precise spatial reasoning. While image-text models excel at interpreting pixel-level color and lighting cues, 3D-text models capture volumetric structure and spatial relationships. However, unified fusion approaches that jointly fuse 2D images, 3D point clouds, and textual instructions face challenges in limited availability of triple-modality data and difficulty resolving conflicting beliefs among modalities. In this work, we introduce CoNav, a collaborative cross-modal reasoning framework where a pretrained 3D-text model explicitly guides an image-text navigation agent by providing structured spatial-semantic knowledge to resolve ambiguities during navigation. Specifically, we introduce Cross-Modal Belief Alignment, which operationalizes this cross-modal guidance by simply sharing textual hypotheses from the 3D-text model to the navigation agent. Through lightweight fine-tuning on a small 2D-3D-text corpus, the navigation agent learns to integrate visual cues with spatial-semantic knowledge derived from the 3D-text model, enabling effective reasoning in embodied navigation. CoNav achieves significant improvements on four standard embodied navigation benchmarks (R2R, CVDN, REVERIE, SOON) and two spatial reasoning benchmarks (ScanQA, SQA3D). Moreover, under close navigation Success Rate, CoNav often generates shorter paths compared to other methods (as measured by SPL), showcasing the potential and challenges of fusing data from different modalities in embodied navigation. Project Page: https://oceanhao.github.io/CoNav/
Abstract:Micro-expression recognition (MER) aims to recognize the short and subtle facial movements from the Micro-expression (ME) video clips, which reveal real emotions. Recent MER methods mostly only utilize special frames from ME video clips or extract optical flow from these special frames. However, they neglect the relationship between movements and space-time, while facial cues are hidden within these relationships. To solve this issue, we propose the Hierarchical Space-Time Attention (HSTA). Specifically, we first process ME video frames and special frames or data parallelly by our cascaded Unimodal Space-Time Attention (USTA) to establish connections between subtle facial movements and specific facial areas. Then, we design Crossmodal Space-Time Attention (CSTA) to achieve a higher-quality fusion for crossmodal data. Finally, we hierarchically integrate USTA and CSTA to grasp the deeper facial cues. Our model emphasizes temporal modeling without neglecting the processing of special data, and it fuses the contents in different modalities while maintaining their respective uniqueness. Extensive experiments on the four benchmarks show the effectiveness of our proposed HSTA. Specifically, compared with the latest method on the CASME3 dataset, it achieves about 3% score improvement in seven-category classification.