Abstract:Existing multi-behavior recommendations tend to prioritize performance at the expense of explainability, while current explainable methods suffer from limited generalizability due to their reliance on external information. Neuro-Symbolic integration offers a promising avenue for explainability by combining neural networks with symbolic logic rule reasoning. Concurrently, we posit that user behavior chains inherently embody an endogenous logic suitable for explicit reasoning. However, these observational multiple behaviors are plagued by confounders, causing models to learn spurious correlations. By incorporating causal inference into this Neuro-Symbolic framework, we propose a novel Causal Neuro-Symbolic Reasoning model for Explainable Multi-Behavior Recommendation (CNRE). CNRE operationalizes the endogenous logic by simulating a human-like decision-making process. Specifically, CNRE first employs hierarchical preference propagation to capture heterogeneous cross-behavior dependencies. Subsequently, it models the endogenous logic rule implicit in the user's behavior chain based on preference strength, and adaptively dispatches to the corresponding neural-logic reasoning path (e.g., conjunction, disjunction). This process generates an explainable causal mediator that approximates an ideal state isolated from confounding effects. Extensive experiments on three large-scale datasets demonstrate CNRE's significant superiority over state-of-the-art baselines, offering multi-level explainability from model design and decision process to recommendation results.




Abstract:Text-to-image synthesis refers to computational methods which translate human written textual descriptions, in the form of keywords or sentences, into images with similar semantic meaning to the text. In earlier research, image synthesis relied mainly on word to image correlation analysis combined with supervised methods to find best alignment of the visual content matching to the text. Recent progress in deep learning (DL) has brought a new set of unsupervised deep learning methods, particularly deep generative models which are able to generate realistic visual images using suitably trained neural network models. In this paper, we review the most recent development in the text-to-image synthesis research domain. Our survey first introduces image synthesis and its challenges, and then reviews key concepts such as generative adversarial networks (GANs) and deep convolutional encoder-decoder neural networks (DCNN). After that, we propose a taxonomy to summarize GAN based text-to-image synthesis into four major categories: Semantic Enhancement GANs, Resolution Enhancement GANs, Diversity Enhancement GANS, and Motion Enhancement GANs. We elaborate the main objective of each group, and further review typical GAN architectures in each group. The taxonomy and the review outline the techniques and the evolution of different approaches, and eventually provide a clear roadmap to summarize the list of contemporaneous solutions that utilize GANs and DCNNs to generate enthralling results in categories such as human faces, birds, flowers, room interiors, object reconstruction from edge maps (games) etc. The survey will conclude with a comparison of the proposed solutions, challenges that remain unresolved, and future developments in the text-to-image synthesis domain.