Abstract:Recent studies of federated graph foundational models (FedGFMs) break the idealized and untenable assumption of having centralized data storage to train graph foundation models, and accommodate the reality of distributed, privacy-restricted data silos. Despite their simplicity and intuition, existing studies that project aligned generalizable knowledge onto a discrete token space via vector-quantized backbones suffer from irreversible knowledge loss during the quantization process. In this context, we argue that reconciling the semantic-structural orthogonality and integrity between pre-trained language models (PLMs) and graph neural networks (GNNs) is paramount for developing effective FedGFMs while simultaneously mitigating the severe data heterogeneity and communication constraints inherent in distributed, resource-limited environments. To address these issues, we propose FedGALA (Federated Graph And Language Alignment), a framework that resolves graph-based semantic-structural orthogonality and integrity in federated settings by employing unsupervised contrastive learning to align GNNs and frozen PLMs within a continuous embedding space, thereby capturing robust, transferable general knowledge. Subsequently, FedGALA leverages a communication-efficient prompt tuning mechanism to steer these pre-aligned encoders and frozen PLMs, facilitating effective adaptation to diverse downstream tasks while circumventing the prohibitive overhead of full-parameter fine-tuning. The comprehensive experiments validate that FedGALA outperforms all competitive baselines across multi-domain datasets on multiple tasks with up to 14.37% performance improvement.
Abstract:Point cloud completion aims to reconstruct complete 3D shapes from partial observations, which is a challenging problem due to severe occlusions and missing geometry. Despite recent advances in multimodal techniques that leverage complementary RGB images to compensate for missing geometry, most methods still follow a Completion-by-Inpainting paradigm, synthesizing missing structures from fused latent features. We empirically show that this paradigm often results in structural inconsistencies and topological artifacts due to limited geometric and semantic constraints. To address this, we rethink the task and propose a more robust paradigm, termed Completion-by-Correction, which begins with a topologically complete shape prior generated by a pretrained image-to-3D model and performs feature-space correction to align it with the partial observation. This paradigm shifts completion from unconstrained synthesis to guided refinement, enabling structurally consistent and observation-aligned reconstruction. Building upon this paradigm, we introduce PGNet, a multi-stage framework that conducts dual-feature encoding to ground the generative prior, synthesizes a coarse yet structurally aligned scaffold, and progressively refines geometric details via hierarchical correction. Experiments on the ShapeNetViPC dataset demonstrate the superiority of PGNet over state-of-the-art baselines in terms of average Chamfer Distance (-23.5%) and F-score (+7.1%).