Abstract:The vulnerability of neural networks to adversarial perturbations has necessitated formal verification techniques that can rigorously certify the quality of neural networks. As the state-of-the-art, branch and bound (BaB) is a "divide-and-conquer" strategy that applies off-the-shelf verifiers to sub-problems for which they perform better. While BaB can identify the sub-problems that are necessary to be split, it explores the space of these sub-problems in a naive "first-come-first-serve" manner, thereby suffering from an issue of inefficiency to reach a verification conclusion. To bridge this gap, we introduce an order over different sub-problems produced by BaB, concerning with their different likelihoods of containing counterexamples. Based on this order, we propose a novel verification framework Oliva that explores the sub-problem space by prioritizing those sub-problems that are more likely to find counterexamples, in order to efficiently reach the conclusion of the verification. Even if no counterexample can be found in any sub-problem, it only changes the order of visiting different sub-problem and so will not lead to a performance degradation. Specifically, Oliva has two variants, including $Oliva^{GR}$, a greedy strategy that always prioritizes the sub-problems that are more likely to find counterexamples, and $Oliva^{SA}$, a balanced strategy inspired by simulated annealing that gradually shifts from exploration to exploitation to locate the globally optimal sub-problems. We experimentally evaluate the performance of Oliva on 690 verification problems spanning over 5 models with datasets MNIST and CIFAR10. Compared to the state-of-the-art approaches, we demonstrate the speedup of Oliva for up to 25X in MNIST, and up to 80X in CIFAR10.
Abstract:Formal verification is a rigorous approach that can provably ensure the quality of neural networks, and to date, Branch and Bound (BaB) is the state-of-the-art that performs verification by splitting the problem as needed and applying off-the-shelf verifiers to sub-problems for improved performance. However, existing BaB may not be efficient, due to its naive way of exploring the space of sub-problems that ignores the \emph{importance} of different sub-problems. To bridge this gap, we first introduce a notion of ``importance'' that reflects how likely a counterexample can be found with a sub-problem, and then we devise a novel verification approach, called ABONN, that explores the sub-problem space of BaB adaptively, in a Monte-Carlo tree search (MCTS) style. The exploration is guided by the ``importance'' of different sub-problems, so it favors the sub-problems that are more likely to find counterexamples. As soon as it finds a counterexample, it can immediately terminate; even though it cannot find, after visiting all the sub-problems, it can still manage to verify the problem. We evaluate ABONN with 552 verification problems from commonly-used datasets and neural network models, and compare it with the state-of-the-art verifiers as baseline approaches. Experimental evaluation shows that ABONN demonstrates speedups of up to $15.2\times$ on MNIST and $24.7\times$ on CIFAR-10. We further study the influences of hyperparameters to the performance of ABONN, and the effectiveness of our adaptive tree exploration.
Abstract:Deep neural networks (DNNs), are widely used in many industries such as image recognition, supply chain, medical diagnosis, and autonomous driving. However, prior work has shown the high accuracy of a DNN model does not imply high robustness (i.e., consistent performances on new and future datasets) because the input data and external environment (e.g., software and model configurations) for a deployed model are constantly changing. Hence, ensuring the robustness of deep learning is not an option but a priority to enhance business and consumer confidence. Previous studies mostly focus on the data aspect of model variance. In this article, we systematically summarize DNN robustness issues and formulate them in a holistic view through two important aspects, i.e., data and software configuration variances in DNNs. We also provide a predictive framework to generate representative variances (counterexamples) by considering both data and configurations for robust learning through the lens of search-based optimization.