Abstract:Large Language Models (LLMs) have become indispensable across various domains, but this comes at the cost of substantial computational and memory resources. Model pruning addresses this by removing redundant components from models. In particular, block pruning can achieve significant compression and inference acceleration. However, existing block pruning methods are often unstable and struggle to attain globally optimal solutions. In this paper, we propose a mutual information based pruning method MI-PRUN for LLMs. Specifically, we leverages mutual information to identify redundant blocks by evaluating transitions in hidden states. Additionally, we incorporate the Data Processing Inequality (DPI) to reveal the relationship between the importance of entire contiguous blocks and that of individual blocks. Moreover, we develop the Fast-Block-Select algorithm, which iteratively updates block combinations to achieve a globally optimal solution while significantly improving the efficiency. Extensive experiments across various models and datasets demonstrate the stability and effectiveness of our method.
Abstract:Large Language Models (LLMs) have achieved remarkable success across a wide spectrum of natural language processing tasks. However, their ever-growing scale introduces significant barriers to real-world deployment, including substantial computational overhead, memory footprint, and inference latency. While model pruning presents a viable solution to these challenges, existing unstructured pruning techniques often yield irregular sparsity patterns that necessitate specialized hardware or software support. In this work, we explore structured pruning, which eliminates entire architectural components and maintains compatibility with standard hardware accelerators. We introduce a novel structured pruning framework that leverages a hybrid multi-domain calibration set and an iterative calibration strategy to effectively identify and remove redundant channels. Extensive experiments on various models across diverse downstream tasks show that our approach achieves significant compression with minimal performance degradation.