Abstract:The adverse drug reactions (ADRs) predicted based on the biased records in FAERS (U.S. Food and Drug Administration Adverse Event Reporting System) may mislead diagnosis online. Generally, such problems are solved by optimizing reporting odds ratio (ROR) or proportional reporting ratio (PRR). However, these methods that rely on statistical methods cannot eliminate the biased data, leading to inaccurate signal prediction. In this paper, we propose PFed-signal, a federated learning-based signal prediction model of ADR, which utilizes the Euclidean distance to eliminate the biased data from FAERS, thereby improving the accuracy of ADR prediction. Specifically, we first propose Pfed-Split, a method to split the original dataset into a split dataset based on ADR. Then we propose ADR-signal, an ADR prediction model, including a biased data identification method based on federated learning and an ADR prediction model based on Transformer. The former identifies the biased data according to the Euclidean distance and generates a clean dataset by deleting the biased data. The latter is an ADR prediction model based on Transformer trained on the clean data set. The results show that the ROR and PRR on the clean dataset are better than those of the traditional methods. Furthermore, the accuracy rate, F1 score, recall rate and AUC of PFed-Signal are 0.887, 0.890, 0.913 and 0.957 respectively, which are higher than the baselines.




Abstract:Learning representations from videos requires understanding continuous motion and visual correspondences between frames. In this paper, we introduce the Concatenated Masked Autoencoders (CatMAE) as a spatial-temporal learner for self-supervised video representation learning. For the input sequence of video frames, CatMAE keeps the initial frame unchanged while applying substantial masking (95%) to subsequent frames. The encoder in CatMAE is responsible for encoding visible patches for each frame individually; subsequently, for each masked frame, the decoder leverages visible patches from both previous and current frames to reconstruct the original image. Our proposed method enables the model to estimate the motion information between visible patches, match the correspondences between preceding and succeeding frames, and ultimately learn the evolution of scenes. Furthermore, we propose a new data augmentation strategy, Video-Reverse (ViRe), which uses reversed video frames as the model's reconstruction targets. This further encourages the model to utilize continuous motion details and correspondences to complete the reconstruction, thereby enhancing the model's capabilities. Compared to the most advanced pre-training methods, CatMAE achieves a leading level in video segmentation tasks and action recognition tasks.