Abstract:The point cloud classification tasks face the dual challenge of efficiently extracting local geometric features while maintaining model complexity. The Mamba architecture utilizes the linear complexity advantage of state space models (SSMs) to overcome the computational bottleneck of Transformers while balancing global modeling capabilities. However, the inherent contradiction between its unidirectional dependency and the unordered nature of point clouds impedes modeling spatial correlation in local neighborhoods, thus constraining geometric feature extraction. This paper proposes Hybrid-Emba3D, a bidirectional Mamba model enhanced by geometry-feature coupling and cross-path feature hybridization. The Local geometric pooling with geometry-feature coupling mechanism significantly enhances local feature discriminative power via coordinated propagation and dynamic aggregation of geometric information between local center points and their neighborhoods, without introducing additional parameters. The designed Collaborative feature enhancer adopts dual-path hybridization, effectively handling local mutations and sparse key signals, breaking through the limitations of traditional SSM long-range modeling. Experimental results demonstrate that the proposed model achieves a new SOTA classification accuracy of 95.99% on ModelNet40 with only 0.03M additional.
Abstract:3D single object tracking within LIDAR point clouds is a pivotal task in computer vision, with profound implications for autonomous driving and robotics. However, existing methods, which depend solely on appearance matching via Siamese networks or utilize motion information from successive frames, encounter significant challenges. Issues such as similar objects nearby or occlusions can result in tracker drift. To mitigate these challenges, we design an innovative spatio-temporal bi-directional cross-frame distractor filtering tracker, named STMD-Tracker. Our first step involves the creation of a 4D multi-frame spatio-temporal graph convolution backbone. This design separates KNN graph spatial embedding and incorporates 1D temporal convolution, effectively capturing temporal fluctuations and spatio-temporal information. Subsequently, we devise a novel bi-directional cross-frame memory procedure. This integrates future and synthetic past frame memory to enhance the current memory, thereby improving the accuracy of iteration-based tracking. This iterative memory update mechanism allows our tracker to dynamically compensate for information in the current frame, effectively reducing tracker drift. Lastly, we construct spatially reliable Gaussian masks on the fused features to eliminate distractor points. This is further supplemented by an object-aware sampling strategy, which bolsters the efficiency and precision of object localization, thereby reducing tracking errors caused by distractors. Our extensive experiments on KITTI, NuScenes and Waymo datasets demonstrate that our approach significantly surpasses the current state-of-the-art methods.