Abstract:This paper presents a robust model predictive control (MPC) framework that explicitly addresses the non-Gaussian noise inherent in deep learning-based perception modules used for state estimation. Recognizing that accurate uncertainty quantification of the perception module is essential for safe feedback control, our approach departs from the conventional assumption of zero-mean noise quantification of the perception error. Instead, it employs set-based state estimation with constrained zonotopes to capture biased, heavy-tailed uncertainties while maintaining bounded estimation errors. To improve computational efficiency, the robust MPC is reformulated as a linear program (LP), using a Minkowski-Lyapunov-based cost function with an added slack variable to prevent degenerate solutions. Closed-loop stability is ensured through Minkowski-Lyapunov inequalities and contractive zonotopic invariant sets. The largest stabilizing terminal set and its corresponding feedback gain are then derived via an ellipsoidal approximation of the zonotopes. The proposed framework is validated through both simulations and hardware experiments on an omnidirectional mobile robot along with a camera and a convolutional neural network-based perception module implemented within a ROS2 framework. The results demonstrate that the perception-aware MPC provides stable and accurate control performance under heavy-tailed noise conditions, significantly outperforming traditional Gaussian-noise-based designs in terms of both state estimation error bounding and overall control performance.
Abstract:This paper presents a novel direct data-driven control framework for solving the linear quadratic regulator (LQR) under disturbances and noisy state measurements. The system dynamics are assumed unknown, and the LQR solution is learned using only a single trajectory of noisy input-output data while bypassing system identification. Our approach guarantees mean-square stability (MSS) and optimal performance by leveraging convex optimization techniques that incorporate noise statistics directly into the controller synthesis. First, we establish a theoretical result showing that the MSS of an uncertain data-driven system implies the MSS of the true closed-loop system. Building on this, we develop a robust stability condition using linear matrix inequalities (LMIs) that yields a stabilizing controller gain from noisy measurements. Finally, we formulate a data-driven LQR problem as a semidefinite program (SDP) that computes an optimal gain, minimizing the steady-state covariance. Extensive simulations on benchmark systems -- including a rotary inverted pendulum and an active suspension system -- demonstrate the superior robustness and accuracy of our method compared to existing data-driven LQR approaches. The proposed framework offers a practical and theoretically grounded solution for controller design in noise-corrupted environments where system identification is infeasible.