Abstract:Brain Magnetic Resonance Imaging (MRI) plays a central role in studying neurological development, aging, and diseases. One key application is Brain Age Prediction (BAP), which estimates an individual's biological brain age from MRI data. Effective BAP models require large, diverse, and age-balanced datasets, whereas existing 3D MRI datasets are demographically skewed, limiting fairness and generalizability. Acquiring new data is costly and ethically constrained, motivating generative data augmentation. Current generative methods are often based on latent diffusion models, which operate in learned low dimensional latent spaces to address the memory demands of volumetric MRI data. However, these methods are typically slow at inference, may introduce artifacts due to latent compression, and are rarely conditioned on age, thereby affecting the BAP performance. In this work, we propose FlowLet, a conditional generative framework that synthesizes age-conditioned 3D MRIs by leveraging flow matching within an invertible 3D wavelet domain, helping to avoid reconstruction artifacts and reducing computational demands. Experiments show that FlowLet generates high-fidelity volumes with few sampling steps. Training BAP models with data generated by FlowLet improves performance for underrepresented age groups, and region-based analysis confirms preservation of anatomical structures.
Abstract:This demo paper presents AirSense-R, a privacy-preserving mobile application that provides real-time, pollution-aware recommendations for points of interest (POIs) in urban environments. By combining real-time air quality monitoring data with user preferences, the proposed system aims to help users make health-conscious decisions about the locations they visit. The application utilizes collaborative filtering for personalized suggestions, and federated learning for privacy protection, and integrates air pollutant readings from AirSENCE sensor networks in cities such as Bari, Italy, and Cork, Ireland. Additionally, the AirSENCE prediction engine can be employed to detect anomaly readings and interpolate for air quality readings in areas with sparse sensor coverage. This system offers a promising, health-oriented POI recommendation solution that adapts dynamically to current urban air quality conditions while safeguarding user privacy. The code of AirTOWN and a demonstration video is made available at the following repo: https://github.com/AirtownApp/Airtown-Application.git.
Abstract:This demo paper presents \airtown, a privacy-preserving mobile application that provides real-time, pollution-aware recommendations for points of interest (POIs) in urban environments. By combining real-time Air Quality Index (AQI) data with user preferences, the proposed system aims to help users make health-conscious decisions about the locations they visit. The application utilizes collaborative filtering for personalized suggestions, and federated learning for privacy protection, and integrates AQI data from sensor networks in cities such as Bari, Italy, and Cork, UK. In areas with sparse sensor coverage, interpolation techniques approximate AQI values, ensuring broad applicability. This system offers a poromsing, health-oriented POI recommendation solution that adapts dynamically to current urban air quality conditions while safeguarding user privacy.