Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

CMAP

Abstract:Flow Matching (FM) (also referred to as stochastic interpolants or rectified flows) stands out as a class of generative models that aims to bridge in finite time the target distribution $\nu^\star$ with an auxiliary distribution $\mu$, leveraging a fixed coupling $\pi$ and a bridge which can either be deterministic or stochastic. These two ingredients define a path measure which can then be approximated by learning the drift of its Markovian projection. The main contribution of this paper is to provide relatively mild assumptions on $\nu^\star$, $\mu$ and $\pi$ to obtain non-asymptotics guarantees for Diffusion Flow Matching (DFM) models using as bridge the conditional distribution associated with the Brownian motion. More precisely, we establish bounds on the Kullback-Leibler divergence between the target distribution and the one generated by such DFM models under moment conditions on the score of $\nu^\star$, $\mu$ and $\pi$, and a standard $L^2$-drift-approximation error assumption.

Via

Abstract:The classical (overdamped) Langevin dynamics provide a natural algorithm for sampling from its invariant measure, which uniquely minimizes an energy functional over the space of probability measures, and which concentrates around the minimizer(s) of the associated potential when the noise parameter is small. We introduce analogous diffusion dynamics that sample from an entropy-regularized optimal transport, which uniquely minimizes the same energy functional but constrained to the set $\Pi(\mu,\nu)$ of couplings of two given marginal probability measures $\mu$ and $\nu$ on $\mathbb{R}^d$, and which concentrates around the optimal transport coupling(s) for small regularization parameter. More specifically, our process satisfies two key properties: First, the law of the solution at each time stays in $\Pi(\mu,\nu)$ if it is initialized there. Second, the long-time limit is the unique solution of an entropic optimal transport problem. In addition, we show by means of a new log-Sobolev-type inequality that the convergence holds exponentially fast, for sufficiently large regularization parameter and for a class of marginals which strictly includes all strongly log-concave measures. By studying the induced Wasserstein geometry of the submanifold $\Pi(\mu,\nu)$, we argue that the SDE can be viewed as a Wasserstein gradient flow on this space of couplings, at least when $d=1$, and we identify a conjectural gradient flow for $d \ge 2$. The main technical difficulties stems from the appearance of conditional expectation terms which serve to constrain the dynamics to $\Pi(\mu,\nu)$.

Via

Abstract:Diffusion models are a new class of generative models that revolve around the estimation of the score function associated with a stochastic differential equation. Subsequent to its acquisition, the approximated score function is then harnessed to simulate the corresponding time-reversal process, ultimately enabling the generation of approximate data samples. Despite their evident practical significance these models carry, a notable challenge persists in the form of a lack of comprehensive quantitative results, especially in scenarios involving non-regular scores and estimators. In almost all reported bounds in Kullback Leibler (KL) divergence, it is assumed that either the score function or its approximation is Lipschitz uniformly in time. However, this condition is very restrictive in practice or appears to be difficult to establish. To circumvent this issue, previous works mainly focused on establishing convergence bounds in KL for an early stopped version of the diffusion model and a smoothed version of the data distribution, or assuming that the data distribution is supported on a compact manifold. These explorations have lead to interesting bounds in either Wasserstein or Fortet-Mourier metrics. However, the question remains about the relevance of such early-stopping procedure or compactness conditions. In particular, if there exist a natural and mild condition ensuring explicit and sharp convergence bounds in KL. In this article, we tackle the aforementioned limitations by focusing on score diffusion models with fixed step size stemming from the Ornstein-Ulhenbeck semigroup and its kinetic counterpart. Our study provides a rigorous analysis, yielding simple, improved and sharp convergence bounds in KL applicable to any data distribution with finite Fisher information with respect to the standard Gaussian distribution.

Via

Abstract:Computational optimal transport (OT) has recently emerged as a powerful framework with applications in various fields. In this paper we focus on a relaxation of the original OT problem, the entropic OT problem, which allows to implement efficient and practical algorithmic solutions, even in high dimensional settings. This formulation, also known as the Schr\"odinger Bridge problem, notably connects with Stochastic Optimal Control (SOC) and can be solved with the popular Sinkhorn algorithm. In the case of discrete-state spaces, this algorithm is known to have exponential convergence; however, achieving a similar rate of convergence in a more general setting is still an active area of research. In this work, we analyze the convergence of the Sinkhorn algorithm for probability measures defined on the $d$-dimensional torus $\mathbb{T}_L^d$, that admit densities with respect to the Haar measure of $\mathbb{T}_L^d$. In particular, we prove pointwise exponential convergence of Sinkhorn iterates and their gradient. Our proof relies on the connection between these iterates and the evolution along the Hamilton-Jacobi-Bellman equations of value functions obtained from SOC-problems. Our approach is novel in that it is purely probabilistic and relies on coupling by reflection techniques for controlled diffusions on the torus.

Via

Abstract:Recently there is a rising interest in the research of mean field optimization, in particular because of its role in analyzing the training of neural networks. In this paper by adding the Fisher Information as the regularizer, we relate the regularized mean field optimization problem to a so-called mean field Schrodinger dynamics. We develop an energy-dissipation method to show that the marginal distributions of the mean field Schrodinger dynamics converge exponentially quickly towards the unique minimizer of the regularized optimization problem. Remarkably, the mean field Schrodinger dynamics is proved to be a gradient flow on the probability measure space with respect to the relative entropy. Finally we propose a Monte Carlo method to sample the marginal distributions of the mean field Schrodinger dynamics.

Via

Figures and Tables:

Abstract:In this paper we study a type of games regularized by the relative entropy, where the players' strategies are coupled through a random environment variable. Besides the existence and the uniqueness of equilibria of such games, we prove that the marginal laws of the corresponding mean-field Langevin systems can converge towards the games' equilibria in different settings. As applications, the dynamic games can be treated as games on a random environment when one treats the time horizon as the environment. In practice, our results can be applied to analysing the stochastic gradient descent algorithm for deep neural networks in the context of supervised learning as well as for the generative adversarial networks.

Via