Abstract:Aggregation rules are the cornerstone of distributed (or federated) learning in the presence of adversaries, under the so-called Byzantine threat model. They are also interesting mathematical objects from the point of view of robust mean estimation. The Krum aggregation rule has been extensively studied, and endowed with formal robustness and convergence guarantees. Yet, MultiKrum, a natural extension of Krum, is often preferred in practice for its superior empirical performance, even though no theoretical guarantees were available until now. In this work, we provide the first proof that MultiKrum is a robust aggregation rule, and bound its robustness coefficient. To do so, we introduce $κ^\star$, the optimal *robustness coefficient* of an aggregation rule, which quantifies the accuracy of mean estimation in the presence of adversaries in a tighter manner compared with previously adopted notions of robustness. We then construct an upper and a lower bound on MultiKrum's robustness coefficient. As a by-product, we also improve on the best-known bounds on Krum's robustness coefficient. We show that MultiKrum's bounds are never worse than Krum's, and better in realistic regimes. We illustrate this analysis by an experimental investigation on the quality of the lower bound.
Abstract:If you tell a learning model that you prefer an alternative $a$ over another alternative $b$, then you probably expect the model to be monotone, that is, the valuation of $a$ increases, and that of $b$ decreases. Yet, perhaps surprisingly, many widely deployed comparison-based preference learning models, including large language models, fail to have this guarantee. Until now, the only comparison-based preference learning algorithms that were proved to be monotone are the Generalized Bradley-Terry models. Yet, these models are unable to generalize to uncompared data. In this paper, we advance the understanding of the set of models with generalization ability that are monotone. Namely, we propose a new class of Linear Generalized Bradley-Terry models with Diffusion Priors, and identify sufficient conditions on alternatives' embeddings that guarantee monotonicity. Our experiments show that this monotonicity is far from being a general guarantee, and that our new class of generalizing models improves accuracy, especially when the dataset is limited.