Abstract:We develop a framework to quantify the time-to-unsafe-sampling - the number of large language model (LLM) generations required to trigger an unsafe (e.g., toxic) response. Estimating this quantity is challenging, since unsafe responses are exceedingly rare in well-aligned LLMs, potentially occurring only once in thousands of generations. As a result, directly estimating time-to-unsafe-sampling would require collecting training data with a prohibitively large number of generations per prompt. However, with realistic sampling budgets, we often cannot generate enough responses to observe an unsafe outcome for every prompt, leaving the time-to-unsafe-sampling unobserved in many cases, making the estimation and evaluation tasks particularly challenging. To address this, we frame this estimation problem as one of survival analysis and develop a provably calibrated lower predictive bound (LPB) on the time-to-unsafe-sampling of a given prompt, leveraging recent advances in conformal prediction. Our key innovation is designing an adaptive, per-prompt sampling strategy, formulated as a convex optimization problem. The objective function guiding this optimized sampling allocation is designed to reduce the variance of the estimators used to construct the LPB, leading to improved statistical efficiency over naive methods that use a fixed sampling budget per prompt. Experiments on both synthetic and real data support our theoretical results and demonstrate the practical utility of our method for safety risk assessment in generative AI models.