Abstract:Natural Language Understanding (NLU) is a basic task in Natural Language Processing (NLP). The evaluation of NLU capabilities has become a trending research topic that attracts researchers in the last few years, resulting in the development of numerous benchmarks. These benchmarks include various tasks and datasets in order to evaluate the results of pretrained models via public leaderboards. Notably, several benchmarks contain diagnostics datasets designed for investigation and fine-grained error analysis across a wide range of linguistic phenomena. This survey provides a comprehensive review of available English, Arabic, and Multilingual NLU benchmarks, with a particular emphasis on their diagnostics datasets and the linguistic phenomena they covered. We present a detailed comparison and analysis of these benchmarks, highlighting their strengths and limitations in evaluating NLU tasks and providing in-depth error analysis. When highlighting the gaps in the state-of-the-art, we noted that there is no naming convention for macro and micro categories or even a standard set of linguistic phenomena that should be covered. Consequently, we formulated a research question regarding the evaluation metrics of the evaluation diagnostics benchmarks: "Why do not we have an evaluation standard for the NLU evaluation diagnostics benchmarks?" similar to ISO standard in industry. We conducted a deep analysis and comparisons of the covered linguistic phenomena in order to support experts in building a global hierarchy for linguistic phenomena in future. We think that having evaluation metrics for diagnostics evaluation could be valuable to gain more insights when comparing the results of the studied models on different diagnostics benchmarks.
Abstract:Requirement traceability is the process of identifying the inter-dependencies between requirements. It poses a significant challenge when conducted manually, especially when dealing with requirements at various levels of abstraction. In this work, we propose a novel approach to automate the task of linking high-level business requirements with more technical system requirements. The proposed approach begins by representing each requirement using a Bag of-Words (BOW) model combined with the Term Frequency-Inverse Document Frequency (TF-IDF) scoring function. Then, we suggested an enhanced cosine similarity that uses recent advances in word embedding representation to correct traditional cosine similarity function limitations. To evaluate the effectiveness of our approach, we conducted experiments on three well-known datasets: COEST, WARC(NFR), and WARC(FRS). The results demonstrate that our approach significantly improves efficiency compared to existing methods. We achieved better results with an increase of approximately 18.4% in one of the datasets, as measured by the F2 score.