Abstract:Currently, there are computer vision systems that help us with tasks that would be dull for humans, such as surveillance and vehicle tracking. An important part of this analysis is to identify traffic anomalies. An anomaly tells us that something unusual has happened, in this case on the highway. This paper aims to model vehicle tracking using computer vision to detect traffic anomalies on a highway. We develop the steps of detection, tracking, and analysis of traffic: the detection of vehicles from video of urban traffic, the tracking of vehicles using a bipartite graph and the Convex Hull algorithm to delimit moving areas. Finally for anomaly detection we use two data structures to detect the beginning and end of the anomaly. The first is the QuadTree that groups vehicles that are stopped for a long time on the road and the second that approaches vehicles that are occluded. Experimental results show that our method is acceptable on the Track4 test set, with an F1 score of 85.7% and a mean squared error of 25.432.
Abstract:This article reviews the "Once learning" mechanism that was proposed 23 years ago and the subsequent successes of "One-shot learning" in image classification and "You Only Look Once - YOLO" in objective detection. Analyzing the current development of Artificial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.