Abstract:Flexible Electronics (FE) offer a promising alternative to rigid silicon-based hardware for wearable healthcare devices, enabling lightweight, conformable, and low-cost systems. However, their limited integration density and large feature sizes impose strict area and power constraints, making ML-based healthcare systems-integrating analog frontend, feature extraction and classifier-particularly challenging. Existing FE solutions often neglect potential system-wide solutions and focus on the classifier, overlooking the substantial hardware cost of feature extraction and Analog-to-Digital Converters (ADCs)-both major contributors to area and power consumption. In this work, we present a holistic mixed-signal feature-to-classifier co-design framework for flexible smart wearable systems. To the best of our knowledge, we design the first analog feature extractors in FE, significantly reducing feature extraction cost. We further propose an hardware-aware NAS-inspired feature selection strategy within ML training, enabling efficient, application-specific designs. Our evaluation on healthcare benchmarks shows our approach delivers highly accurate, ultra-area-efficient flexible systems-ideal for disposable, low-power wearable monitoring.
Abstract:Conventional stress monitoring relies on episodic, symptom-focused interventions, missing the need for continuous, accessible, and cost-efficient solutions. State-of-the-art approaches use rigid, silicon-based wearables, which, though capable of multitasking, are not optimized for lightweight, flexible wear, limiting their practicality for continuous monitoring. In contrast, flexible electronics (FE) offer flexibility and low manufacturing costs, enabling real-time stress monitoring circuits. However, implementing complex circuits like machine learning (ML) classifiers in FE is challenging due to integration and power constraints. Previous research has explored flexible biosensors and ADCs, but classifier design for stress detection remains underexplored. This work presents the first comprehensive design space exploration of low-power, flexible stress classifiers. We cover various ML classifiers, feature selection, and neural simplification algorithms, with over 1200 flexible classifiers. To optimize hardware efficiency, fully customized circuits with low-precision arithmetic are designed in each case. Our exploration provides insights into designing real-time stress classifiers that offer higher accuracy than current methods, while being low-cost, conformable, and ensuring low power and compact size.
Abstract:Printed electronics offer a promising alternative for applications beyond silicon-based systems, requiring properties like flexibility, stretchability, conformality, and ultra-low fabrication costs. Despite the large feature sizes in printed electronics, printed neural networks have attracted attention for meeting target application requirements, though realizing complex circuits remains challenging. This work bridges the gap between classification accuracy and area efficiency in printed neural networks, covering the entire processing-near-sensor system design and co-optimization from the analog-to-digital interface-a major area and power bottleneck-to the digital classifier. We propose an automated framework for designing printed Ternary Neural Networks with arbitrary input precision, utilizing multi-objective optimization and holistic approximation. Our circuits outperform existing approximate printed neural networks by 17x in area and 59x in power on average, being the first to enable printed-battery-powered operation with under 5% accuracy loss while accounting for analog-to-digital interfacing costs.
Abstract:As Deep Neural Networks (DNNs) continue to drive advancements in artificial intelligence, the design of hardware accelerators faces growing concerns over embodied carbon footprint due to complex fabrication processes. 3D integration improves performance but introduces sustainability challenges, making carbon-aware optimization essential. In this work, we propose a carbon-efficient design methodology for 3D DNN accelerators, leveraging approximate computing and genetic algorithm-based design space exploration to optimize Carbon Delay Product (CDP). By integrating area-efficient approximate multipliers into Multiply-Accumulate (MAC) units, our approach effectively reduces silicon area and fabrication overhead while maintaining high computational accuracy. Experimental evaluations across three technology nodes (45nm, 14nm, and 7nm) show that our method reduces embodied carbon by up to 30% with negligible accuracy drop.
Abstract:Printed Electronics (PE) technology has emerged as a promising alternative to silicon-based computing. It offers attractive properties such as on-demand ultra-low-cost fabrication, mechanical flexibility, and conformality. However, PE are governed by large feature sizes, prohibiting the realization of complex printed Machine Learning (ML) classifiers. Leveraging PE's ultra-low non-recurring engineering and fabrication costs, designers can fully customize hardware to a specific ML model and dataset, significantly reducing circuit complexity. Despite significant advancements, state-of-the-art solutions achieve area efficiency at the expense of considerable accuracy loss. Our work mitigates this by designing area- and power-efficient printed ML classifiers with little to no accuracy degradation. Specifically, we introduce the first sequential Support Vector Machine (SVM) classifiers, exploiting the hardware efficiency of bespoke control and storage units and a single Multiply-Accumulate compute engine. Our SVMs yield on average 6x lower area and 4.6% higher accuracy compared to the printed state of the art.
Abstract:Printed Electronics (PE) provide a mechanically flexible and cost-effective solution for machine learning (ML) circuits, compared to silicon-based technologies. However, due to large feature sizes, printed classifiers are limited by high power, area, and energy overheads, which restricts the realization of battery-powered systems. In this work, we design sequential printed bespoke Support Vector Machine (SVM) circuits that adhere to the power constraints of existing printed batteries while minimizing energy consumption, thereby boosting battery life. Our results show 6.5x energy savings while maintaining higher accuracy compared to the state of the art.
Abstract:In this work, we present a control variate approximation technique that enables the exploitation of highly approximate multipliers in Deep Neural Network (DNN) accelerators. Our approach does not require retraining and significantly decreases the induced error due to approximate multiplications, improving the overall inference accuracy. As a result, our approach enables satisfying tight accuracy loss constraints while boosting the power savings. Our experimental evaluation, across six different DNNs and several approximate multipliers, demonstrates the versatility of our approach and shows that compared to the accurate design, our control variate approximation achieves the same performance, 45% power reduction, and less than 1% average accuracy loss. Compared to the corresponding approximate designs without using our technique, our approach improves the accuracy by 1.9x on average.
Abstract:Printed electronics technology offers a cost-effectiveand fully-customizable solution to computational needs beyondthe capabilities of traditional silicon technologies, offering ad-vantages such as on-demand manufacturing and conformal, low-cost hardware. However, the low-resolution fabrication of printedelectronics, which results in large feature sizes, poses a challengefor integrating complex designs like those of machine learn-ing (ML) classification systems. Current literature optimizes onlythe Multilayer Perceptron (MLP) circuit within the classificationsystem, while the cost of analog-to-digital converters (ADCs)is overlooked. Printed applications frequently require on-sensorprocessing, yet while the digital classifier has been extensivelyoptimized, the analog-to-digital interfacing, specifically the ADCs,dominates the total area and energy consumption. In this work,we target digital printed MLP classifiers and we propose thedesign of customized ADCs per MLP's input which involvesminimizing the distinct represented numbers for each input,simplifying thus the ADC's circuitry. Incorporating this ADCoptimization in the MLP training, enables eliminating ADC levelsand the respective comparators, while still maintaining highclassification accuracy. Our approach achieves 11.2x lower ADCarea for less than 5% accuracy drop across varying MLPs.
Abstract:Flexible Electronics (FE) offer distinct advantages, including mechanical flexibility and low process temperatures, enabling extremely low-cost production. To address the demands of applications such as smart sensors and wearables, flexible devices must be small and operate at low supply voltages. Additionally, target applications often require classifiers to operate directly on analog sensory input, necessitating the use of Analog to Digital Converters (ADCs) to process the sensory data. However, ADCs present serious challenges, particularly in terms of high area and power consumption, especially when considering stringent area and energy budget. In this work, we target common classifiers in this domain such as MLPs and SVMs and present a holistic approach to mitigate the elevated overhead of analog to digital interfacing in FE. First, we propose a novel design for Binary Search ADC that reduces area overhead 2X compared with the state-of-the-art Binary design and up to 5.4X compared with Flash ADC. Next, we present an in-training ADC optimization in which we keep the bare-minimum representations required and simplifying ADCs by removing unnecessary components. Our in-training optimization further reduces on average the area in terms of transistor count of the required ADCs by 5X for less than 1% accuracy loss.
Abstract:Vision Transformer (ViT) models which were recently introduced by the transformer architecture have shown to be very competitive and often become a popular alternative to Convolutional Neural Networks (CNNs). However, the high computational requirements of these models limit their practical applicability especially on low-power devices. Current state-of-the-art employs approximate multipliers to address the highly increased compute demands of DNN accelerators but no prior research has explored their use on ViT models. In this work we propose TransAxx, a framework based on the popular PyTorch library that enables fast inherent support for approximate arithmetic to seamlessly evaluate the impact of approximate computing on DNNs such as ViT models. Using TransAxx we analyze the sensitivity of transformer models on the ImageNet dataset to approximate multiplications and perform approximate-aware finetuning to regain accuracy. Furthermore, we propose a methodology to generate approximate accelerators for ViT models. Our approach uses a Monte Carlo Tree Search (MCTS) algorithm to efficiently search the space of possible configurations using a hardware-driven hand-crafted policy. Our evaluation demonstrates the efficacy of our methodology in achieving significant trade-offs between accuracy and power, resulting in substantial gains without compromising on performance.