Abstract:Video autoencoders compress videos into compact latent representations for efficient reconstruction, playing a vital role in enhancing the quality and efficiency of video generation. However, existing video autoencoders often entangle spatial and temporal information, limiting their ability to capture temporal consistency and leading to suboptimal performance. To address this, we propose Autoregressive Video Autoencoder (ARVAE), which compresses and reconstructs each frame conditioned on its predecessor in an autoregressive manner, allowing flexible processing of videos with arbitrary lengths. ARVAE introduces a temporal-spatial decoupled representation that combines downsampled flow field for temporal coherence with spatial relative compensation for newly emerged content, achieving high compression efficiency without information loss. Specifically, the encoder compresses the current and previous frames into the temporal motion and spatial supplement, while the decoder reconstructs the original frame from the latent representations given the preceding frame. A multi-stage training strategy is employed to progressively optimize the model. Extensive experiments demonstrate that ARVAE achieves superior reconstruction quality with extremely lightweight models and small-scale training data. Moreover, evaluations on video generation tasks highlight its strong potential for downstream applications.
Abstract:Recent research has shown that fine-tuning diffusion models (DMs) with arbitrary rewards, including non-differentiable ones, is feasible with reinforcement learning (RL) techniques, enabling flexible model alignment. However, applying existing RL methods to timestep-distilled DMs is challenging for ultra-fast ($\le2$-step) image generation. Our analysis suggests several limitations of policy-based RL methods such as PPO or DPO toward this goal. Based on the insights, we propose fine-tuning DMs with learned differentiable surrogate rewards. Our method, named LaSRO, learns surrogate reward models in the latent space of SDXL to convert arbitrary rewards into differentiable ones for efficient reward gradient guidance. LaSRO leverages pre-trained latent DMs for reward modeling and specifically targets image generation $\le2$ steps for reward optimization, enhancing generalizability and efficiency. LaSRO is effective and stable for improving ultra-fast image generation with different reward objectives, outperforming popular RL methods including PPO and DPO. We further show LaSRO's connection to value-based RL, providing theoretical insights. See our webpage at https://sites.google.com/view/lasro.