Abstract:We develop a linear response framework for interpretability that treats a neural network as a Bayesian statistical mechanical system. A small, controlled perturbation of the data distribution, for example shifting the Pile toward GitHub or legal text, induces a first-order change in the posterior expectation of an observable localized on a chosen component of the network. The resulting susceptibility can be estimated efficiently with local SGLD samples and factorizes into signed, per-token contributions that serve as attribution scores. Building a set of perturbations (probes) yields a response matrix whose low-rank structure separates functional modules such as multigram and induction heads in a 3M-parameter transformer. Susceptibilities link local learning coefficients from singular learning theory with linear-response theory, and quantify how local loss landscape geometry deforms under shifts in the data distribution.
Abstract:As AI systems become more intelligent and their behavior becomes more challenging to assess, they may learn to game the flaws of human feedback instead of genuinely striving to follow instructions; however, this risk can be mitigated by controlling how LLMs generalize human feedback to situations where it is unreliable. To better understand how reward models generalize, we craft 69 distribution shifts spanning 8 categories. We find that reward models do not learn to evaluate `instruction-following' by default and instead favor personas that resemble internet text. Techniques for interpreting reward models' internal representations achieve better generalization than standard fine-tuning, but still frequently fail to distinguish instruction-following from conflated behaviors. We consolidate the 15 most challenging distribution shifts into the GENeralization analogIES (GENIES) benchmark, which we hope will enable progress toward controlling reward model generalization.