Abstract:Large Language Models (LLMs) are rapidly entering children's lives - through parent-driven adoption, schools, and peer networks - yet current AI ethics and safety research do not adequately address content-related risks specific to minors. In this paper, we highlight these gaps with a real-world case study of an LLM-based chatbot deployed in a middle school setting, revealing how students used and sometimes misused the system. Building on these findings, we propose a new taxonomy of content-based risks for minors and introduce MinorBench, an open-source benchmark designed to evaluate LLMs on their ability to refuse unsafe or inappropriate queries from children. We evaluate six prominent LLMs under different system prompts, demonstrating substantial variability in their child-safety compliance. Our results inform practical steps for more robust, child-focused safety mechanisms and underscore the urgency of tailoring AI systems to safeguard young users.
Abstract:Large Language Models are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope. Current guardrails, which often rely on curated examples or custom classifiers, suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production. In this paper, we introduce a flexible, data-free guardrail development methodology that addresses these challenges. By thoroughly defining the problem space qualitatively and passing this to an LLM to generate diverse prompts, we construct a synthetic dataset to benchmark and train off-topic guardrails that outperform heuristic approaches. Additionally, by framing the task as classifying whether the user prompt is relevant with respect to the system prompt, our guardrails effectively generalize to other misuse categories, including jailbreak and harmful prompts. Lastly, we further contribute to the field by open-sourcing both the synthetic dataset and the off-topic guardrail models, providing valuable resources for developing guardrails in pre-production environments and supporting future research and development in LLM safety.