Abstract:6G wireless networks will integrate communication, computing, localization, and sensing capabilities while meeting the needs of high reliability and trustworthiness. In this paper, we develop similar techniques as those used by communication modules of previous generations for the sensing functionality of 6G networks. Specifically, this paper introduces the concept of extended automatic repeat request (e-ARQ) for integrated sensing and communications (ISAC) networks. We focus on multi-static sensing schemes, in which the nodes receiving the reflected sensing signals provide the transmitting nodes with configurable levels of feedback about the sensing result. This technique improves the sensing quality via retransmissions using adaptive parameters. We show that our proposed e-ARQ boosts the sensing quality in terms of detection accuracy and provides a sense of adaptability for applications supported by ISAC networks.
Abstract:This paper considers the problem of downlink localization and user equipments (UEs) tracking with an adaptive procedure for a range of distances. We provide the base station (BS) with two signaling schemes and the UEs with two localization algorithms, assuming far-field (FF) and near-field (NF) conditions, respectively. The proposed schemes employ different beam-sweep patterns, where their compatibility depends on the UE range. Consequently, the FF-NF distinction transcends the traditional definition. Our proposed NF scheme requires beam-focusing on specific spots and more transmissions are required to sweep the area. Instead, the FF scheme assumes distant UEs, and fewer beams are sufficient. We derive a low-complexity algorithm that exploits the FF channel model and highlight its practical benefits and the limitations. Also, we propose an iterative adaptive procedure, where the signaling scheme is depends on the expected accuracy-complexity trade-off. Multiple iterations introduce a tracking application, where the formed trajectory dictates the validity of our assumptions. Moreover, the range from the BS, where the FF signaling scheme can be successfully employed, is investigated. We show that the conventional Fraunhofer distance is not sufficient for adaptive localization and tracking algorithms in the mixed NF and FF environment.
Abstract:This letter studies the problem of jointly detecting active user equipments (UEs) and estimating their location in the near field, wherein the base station (BS) is unaware of the number of active (or inactive) UEs and their positions. The system is equipped with multiple reconfigurable intelligent surfaces (RISs) that aid the process of inspecting the coverage area of the BS with adequate localization resolution providing a low-complexity solution for detection and location estimation. To address this problem, we propose to utilize the additional degrees of freedom due to the additional inspection points provided by the RISs. Specifically, we propose an iterative detection procedure, where multiple inspections are jointly considered, allowing the BS to assign known pilots to previously detected UEs and thereby to provide a structured channel access. Also, the problem of multiple access interference is explored and identified as a limiting performance factor for the activity detection. The results show that, with a proper implementation of the RISs, our proposed scheme can detect/localize the UEs with high accuracy, augmenting benchmark UE detection schemes to a spatially aware detection.
Abstract:This paper considers the problem of downlink localization of user equipment devices (UEs) that are either in the near-field (NF) or in the far-field (FF) of the array of the serving base station (BS). We propose a dual signaling scheme, which can be implemented at the BS, for localizing such UEs. The first scheme assumes FF, while the other assumes NF conditions. Both schemes comprise a beam-sweeping technique, employed by the BS, and a localization algorithm, employed by the UEs. The FF-based scheme enables beam-steering with a low signaling overhead, which is utilized for the proposed localization algorithm, while the NF-based scheme operates with a higher complexity. Specifically, our proposed localization scheme takes advantage of the relaxed structure of the FF, which yields low computational complexity, but is not suitable for operating in the NF. Since the compatibility and the performance of the FF- based scheme depends on the BS-to-UE distance, we study the limitations of FF-based procedure, explore the trade-off in terms of performance and resource requirements for the two schemes, and propose a triggering condition for operating the component schemes of the dual scheme. Also, we study the performance of an iterative localization algorithm that takes into account the accuracy-complexity trade-off and adapts to the actual position of the UE. We find that the conventional Fraunhofer distance is not sufficient for adapting localization algorithms in the mixed NF and FF environment.
Abstract:In this paper, we study a new kind of pilot contamination appearing in multi-operator reconfigurable intelligent surfaces (RIS) assisted networks, where multiple operators provide services to their respective served users. The operators use dedicated frequency bands, but each RIS inadvertently reflects the transmitted uplink signals of the user equipment devices in multiple bands. Consequently, the concurrent reflection of pilot signals during the channel estimation phase introduces a new inter-operator pilot contamination effect. We investigate the implications of this effect in systems with either deterministic or correlated Rayleigh fading channels, specifically focusing on its impact on channel estimation quality, signal equalization, and channel capacity. The numerical results demonstrate the substantial degradation in system performance caused by this phenomenon and highlight the pressing need to address inter-operator pilot contamination in multi-operator RIS deployments. To combat the negative effect of this new type of pilot contamination, we propose to use orthogonal RIS configurations during uplink pilot transmission, which can mitigate or eliminate the negative effect of inter-operator pilot contamination at the expense of some inter-operator information exchange and orchestration.
Abstract:This work investigates interference mitigation techniques in multi-user multiple input multiple output (MU-MIMO) Intelligent Reflecting Surface (IRS)-aided networks, focusing on the base station end. Two methods of precoder design based on block diagonalization are proposed. The first method does not consider the interference caused by the IRS, seeking to mitigate only the multi-user interference. The second method mitigates both the IRS-caused interference and the multi-user interference. A comparison between both methods within an no-IRS MU-MIMO network with strong direct links is provided. The results show that, although in some circumstances IRS interference can be neglected, treating it can improve system capacity and provide higher spectral efficiency
Abstract:In this paper, we study the impact of pilot contamination in a system where two operators serve their respective users with the assistance of two wide-band reconfigurable intelligent surfaces (RIS), each belonging to a single operator. We consider one active user per operator and they use disjoint narrow frequency bands. Although each RIS is dedicated to a single operator, both users' transmissions are reflected by both RISs. We show that this creates a new kind of pilot contamination effect when pilots are transmitted simultaneously. Since combating inter-operator pilot contamination in RIS-assisted networks would require long pilot signal sequences to maintain orthogonality among the users of different operators, we propose the orthogonal configurations of the RISs. Numerical results show that this approach completely eliminates pilot contamination, and significantly improves the performance in terms of channel estimation and equalization by removing the channel estimation bias.
Abstract:This letter proposes a model for symbol detection in the uplink of IRS-assisted networks in the presence of channel aging. During the first stage, we model the received pilot signal as a tensor, which serves as a basis for both estimating the channel and configuring the IRS. In the second stage, the proposed tensor approach tracks the aging process to detect and estimate the transmitted data symbols. Our evaluations show that our proposed channel and symbol estimation schemes improve the performance of IRS-assisted systems in terms of the achieved bit error rate and mean squared error of the received data, compared to state of the art schemes.
Abstract:This paper proposes a pilot decoupling-based two-dimensional channel parameter estimation method for intelligent reflecting surface (IRS)-assisted networks. We exploit the combined effect of Terahertz sparse propagation and the geometrical structure of arrays deployed at the base station, the IRS, and the user equipment to develop a low-complexity channel parameter estimation method. By means of a new pilot design along the horizontal and vertical domains, the overall channel parameter estimation problem is decoupled into different domains. Furthermore, with this decoupling, it is possible to simultaneously sense/estimate the channel parameters and to communicate with the sensed node. Specifically, we derive two estimators by decoupling the global problem into sub-problems and exploiting the built-in tensor structure of the sensing/estimation problem by means of multiple rank-one approximations. The Cram\'er-Rao lower bound is derived to assess the performance of the proposed estimators. We show that the two proposed methods yield accurate parameter estimates and outperform state-of-the-art methods in terms of complexity. The tradeoffs between performance and complexity offered by the proposed methods are discussed and numerically assessed.
Abstract:This letter proposes a high-resolution channel estimation for reconfigurable intelligent surface (RIS)-assisted communication networks. We exploit the inherent geometrical structure of the Terahertz propagation channel, including the antenna array geometries at the base station, the RIS, and the user equipment to design a tensor-based high-resolution channel estimator, referred to as the higher-dimensional rank-one approximations (HDR) method. By exploiting the geometrical structure of the combined base station-RIS-user equipment channel, the proposed HDR estimator recasts parametric channel estimation as a single sixth-order rank-one tensor approximation problem, which can be efficiently solved using higher-order singular value decomposition to deliver parallel estimates of each channel component vector. Numerical results show that the proposed method provides significantly more accurate parameter estimates compared to the competing state-of-the-art Khatri-Rao factorization and least squares methods. The HDR method also leads to higher spectral efficiency than its competitors, especially in the low signal-to-noise ratio regime, while having similar computational complexity as the classical least squares method.