Laboratoire I3S - SPARKS, WIMMICS
Abstract:Over the last decade, knowledge graphs have multiplied, grown, and evolved on the World Wide Web, and the advent of new standards, vocabularies, and application domains has accelerated this trend. IndeGx is a framework leveraging an extensible base of rules to index the content of KGs and the capacities of their SPARQL endpoints. In this article, we show how knowledge representation (KR) and reasoning methods and techniques can be used in a reflexive manner to index and characterize existing knowledge graphs (KG) with respect to their usage of KR methods and techniques. We extended IndeGx with a fully ontology-oriented modeling and processing approach to do so. Using SPARQL rules and an OWL RL ontology of the indexing domain, IndeGx can now build and reason over an index of the contents and characteristics of an open collection of public knowledge graphs. Our extension of the framework relies on a declarative representation of procedural knowledge and collaborative environments (e.g., GitHub) to provide an agile, customizable, and expressive KR approach for building and maintaining such an index of knowledge graphs in the wild. In doing so, we help anyone answer the question of what knowledge is out there in the world wild Semantic Web in general, and we also help our community monitor which KR research results are used in practice. In particular, this article provides a snapshot of the state of the Semantic Web regarding supported standard languages, ontology usage, and diverse quality evaluations by applying this method to a collection of over 300 open knowledge graph endpoints.
Abstract:The SPARQL query language is the standard method to access knowledge graphs (KGs). However, formulating SPARQL queries is a significant challenge for non-expert users, and remains time-consuming for the experienced ones. Best practices recommend to document KGs with competency questions and example queries to contextualise the knowledge they contain and illustrate their potential applications. In practice, however, this is either not the case or the examples are provided in limited numbers. Large Language Models (LLMs) are being used in conversational agents and are proving to be an attractive solution with a wide range of applications, from simple question-answering about common knowledge to generating code in a targeted programming language. However, training and testing these models to produce high quality SPARQL queries from natural language questions requires substantial datasets of question-query pairs. In this paper, we present Q${}^2$Forge that addresses the challenge of generating new competency questions for a KG and corresponding SPARQL queries. It iteratively validates those queries with human feedback and LLM as a judge. Q${}^2$Forge is open source, generic, extensible and modular, meaning that the different modules of the application (CQ generation, query generation and query refinement) can be used separately, as an integrated pipeline, or replaced by alternative services. The result is a complete pipeline from competency question formulation to query evaluation, supporting the creation of reference query sets for any target KG.
Abstract:This article is a collective position paper from the Wimmics research team, expressing our vision of how Web graph data technologies should evolve in the future in order to ensure a high-level of interoperability between the many types of applications that produce and consume graph data. Wimmics stands for Web-Instrumented Man-Machine Interactions, Communities, and Semantics. We are a joint research team between INRIA Sophia Antipolis-M{\'e}diterran{\'e}e and I3S (CNRS and Universit{\'e} C{\^o}te d'Azur). Our challenge is to bridge formal semantics and social semantics on the web. Our research areas are graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The application of our research is supporting and fostering interactions in online communities and management of their resources. In this position paper, we emphasize the need to extend the semantic Web standard stack to address and fulfill new graph data needs, as well as the importance of remaining compatible with existing recommendations, in particular the RDF stack, to avoid the painful duplication of models, languages, frameworks, etc. The following sections group motivations for different directions of work and collect reasons for the creation of a working group on RDF 2.0 and other recommendations of the RDF family.