Abstract:Variational Quantum Algorithms (VQAs) are promising candidates for near-term quantum computing, yet they face scalability challenges due to barren plateaus, where gradients vanish exponentially in the system size. Recent conjectures suggest that avoiding barren plateaus might inherently lead to classical simulability, thus limiting the opportunities for quantum advantage. In this work, we advance the theoretical understanding of the relationship between the trainability and computational complexity of VQAs, thus directly addressing the conjecture. We introduce the Linear Clifford Encoder (LCE), a novel technique that ensures constant-scaling gradient statistics on optimization landscape regions that are close to Clifford circuits. Additionally, we leverage classical Taylor surrogates to reveal computational complexity phase transitions from polynomial to super-polynomial as the initialization region size increases. Combining these results, we reveal a deeper link between trainability and computational complexity, and analytically prove that barren plateaus can be avoided in regions for which no classical surrogate is known to exist. Furthermore, numerical experiments on LCE transformed landscapes confirm in practice the existence of a super-polynomially complex ``transition zone'' where gradients decay polynomially. These findings indicate a plausible path to practically relevant, barren plateau-free variational models with potential for quantum advantage.
Abstract:Monitoring and analyzing process traces is a critical task for modern companies and organizations. In scenarios where there is a gap between trace events and reference business activities, this entails an interpretation problem, amounting to translating each event of any ongoing trace into the corresponding step of the activity instance. Building on a recent approach that frames the interpretation problem as an acceptance problem within an Abstract Argumentation Framework (AAF), one can elegantly analyze plausible event interpretations (possibly in an aggregated form), as well as offer explanations for those that conflict with prior process knowledge. Since, in settings where event-to-activity mapping is highly uncertain (or simply under-specified) this reasoning-based approach may yield lowly-informative results and heavy computation, one can think of discovering a sequencetagging model, trained to suggest highly-probable candidate event interpretations in a context-aware way. However, training such a model optimally may require using a large amount of manually-annotated example traces. Considering the urgent need of developing Green AI solutions enabling environmental and societal sustainability (with reduced labor/computational costs and carbon footprint), we propose a data/computation-efficient neuro-symbolic approach to the problem, where the candidate interpretations returned by the example-driven sequence tagger is refined by the AAF-based reasoner. This allows us to also leverage prior knowledge to compensate for the scarcity of example data, as confirmed by experimental results; clearly, this property is particularly useful in settings where data annotation and model optimization costs are subject to stringent constraints.