Abstract:We present ACADATA, a high-quality parallel dataset for academic translation, that consists of two subsets: ACAD-TRAIN, which contains approximately 1.5 million author-generated paragraph pairs across 96 language directions and ACAD-BENCH, a curated evaluation set of almost 6,000 translations covering 12 directions. To validate its utility, we fine-tune two Large Language Models (LLMs) on ACAD-TRAIN and benchmark them on ACAD-BENCH against specialized machine-translation systems, general-purpose, open-weight LLMs, and several large-scale proprietary models. Experimental results demonstrate that fine-tuning on ACAD-TRAIN leads to improvements in academic translation quality by +6.1 and +12.4 d-BLEU points on average for 7B and 2B models respectively, while also improving long-context translation in a general domain by up to 24.9% when translating out of English. The fine-tuned top-performing model surpasses the best propietary and open-weight models on academic translation domain. By releasing ACAD-TRAIN, ACAD-BENCH and the fine-tuned models, we provide the community with a valuable resource to advance research in academic domain and long-context translation.
Abstract:This paper studies gender bias in machine translation through the lens of Large Language Models (LLMs). Four widely-used test sets are employed to benchmark various base LLMs, comparing their translation quality and gender bias against state-of-the-art Neural Machine Translation (NMT) models for English to Catalan (En $\rightarrow$ Ca) and English to Spanish (En $\rightarrow$ Es) translation directions. Our findings reveal pervasive gender bias across all models, with base LLMs exhibiting a higher degree of bias compared to NMT models. To combat this bias, we explore prompting engineering techniques applied to an instruction-tuned LLM. We identify a prompt structure that significantly reduces gender bias by up to 12% on the WinoMT evaluation dataset compared to more straightforward prompts. These results significantly reduce the gender bias accuracy gap between LLMs and traditional NMT systems.
Abstract:In recent years, Large Language Models (LLMs) have demonstrated exceptional proficiency across a broad spectrum of Natural Language Processing (NLP) tasks, including Machine Translation. However, previous methods predominantly relied on iterative processes such as instruction fine-tuning or continual pre-training, leaving unexplored the challenges of training LLMs solely on parallel data. In this work, we introduce PLUME (Parallel Language Model), a collection of three 2B LLMs featuring varying vocabulary sizes (32k, 128k, and 256k) trained exclusively on Catalan-centric parallel examples. These models perform comparably to previous encoder-decoder architectures on 16 supervised translation directions and 56 zero-shot ones. Utilizing this set of models, we conduct a thorough investigation into the translation capabilities of LLMs, probing their performance, the impact of the different elements of the prompt, and their cross-lingual representation space.
Abstract:In this work, we explore idiomatic language processing with Large Language Models (LLMs). We introduce the Idiomatic language Test Suite IdioTS, a new dataset of difficult examples specifically designed by language experts to assess the capabilities of LLMs to process figurative language at sentence level. We propose a comprehensive evaluation methodology based on an idiom detection task, where LLMs are prompted with detecting an idiomatic expression in a given English sentence. We present a thorough automatic and manual evaluation of the results and an extensive error analysis.