Alert button
Picture for Fernando Gorgulho Fayet

Fernando Gorgulho Fayet

Alert button

CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese

Oct 14, 2021
Arnaldo Candido Junior, Edresson Casanova, Anderson Soares, Frederico Santos de Oliveira, Lucas Oliveira, Ricardo Corso Fernandes Junior, Daniel Peixoto Pinto da Silva, Fernando Gorgulho Fayet, Bruno Baldissera Carlotto, Lucas Rafael Stefanel Gris, Sandra Maria Aluísio

Figure 1 for CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese
Figure 2 for CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese
Figure 3 for CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese
Figure 4 for CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese

Automatic Speech recognition (ASR) is a complex and challenging task. In recent years, there have been significant advances in the area. In particular, for the Brazilian Portuguese (BP) language, there were about 376 hours public available for ASR task until the second half of 2020. With the release of new datasets in early 2021, this number increased to 574 hours. The existing resources, however, are composed of audios containing only read and prepared speech. There is a lack of datasets including spontaneous speech, which are essential in different ASR applications. This paper presents CORAA (Corpus of Annotated Audios) v1. with 291 hours, a publicly available dataset for ASR in BP containing validated pairs (audio-transcription). CORAA also contains European Portuguese audios (4.69 hours). We also present two public ASR models based on Wav2Vec 2.0 XLSR-53 and fine-tuned over CORAA. Our best model achieved a Word Error Rate of 27.35% on CORAA test set and 16.01% on Common Voice test set. When measuring the Character Error Rate, we obtained 14.26% and 5.45% for CORAA and Common Voice, respectively. CORAA corpora were assembled to both improve ASR models in BP with phenomena from spontaneous speech and motivate young researchers to start their studies on ASR for Portuguese. All the corpora are publicly available at https://github.com/nilc-nlp/CORAA under the CC BY-NC-ND 4.0 license.

* This paper is under consideration at Language Resources and Evaluation (LREV) 
Viaarxiv icon