Abstract:Video behavior recognition demands stable and discriminative representations under complex spatiotemporal variations. However, prevailing data augmentation strategies for videos remain largely perturbation-driven, often introducing uncontrolled variations that amplify non-discriminative factors, which finally weaken intra-class distributional structure and representation drift with inconsistent gains across temporal scales. To address these problems, we propose Representation-aware Mixing Augmentation (ReMA), a plug-and-play augmentation strategy that formulates mixing as a controlled replacement process to expand representations while preserving class-conditional stability. ReMA integrates two complementary mechanisms. Firstly, the Representation Alignment Mechanism (RAM) performs structured intra-class mixing under distributional alignment constraints, suppressing irrelevant intra-class drift while enhancing statistical reliability. Then, the Dynamic Selection Mechanism (DSM) generates motion-aware spatiotemporal masks to localize perturbations, guiding them away from discrimination-sensitive regions and promoting temporal coherence. By jointly controlling how and where mixing is applied, ReMA improves representation robustness without additional supervision or trainable parameters. Extensive experiments on diverse video behavior benchmarks demonstrate that ReMA consistently enhances generalization and robustness across different spatiotemporal granularities.
Abstract:Video-based Affective Computing (VAC), vital for emotion analysis and human-computer interaction, suffers from model instability and representational degradation due to complex emotional dynamics. Since the meaning of different emotional fluctuations may differ under different emotional contexts, the core limitation is the lack of a hierarchical structural mechanism to disentangle distinct affective components, i.e., emotional bases (the long-term emotional tone), and transient fluctuations (the short-term emotional fluctuations). To address this, we propose the Low-Rank Sparse Emotion Understanding Framework (LSEF), a unified model grounded in the Low-Rank Sparse Principle, which theoretically reframes affective dynamics as a hierarchical low-rank sparse compositional process. LSEF employs three plug-and-play modules, i.e., the Stability Encoding Module (SEM) captures low-rank emotional bases; the Dynamic Decoupling Module (DDM) isolates sparse transient signals; and the Consistency Integration Module (CIM) reconstructs multi-scale stability and reactivity coherence. This framework is optimized by a Rank Aware Optimization (RAO) strategy that adaptively balances gradient smoothness and sensitivity. Extensive experiments across multiple datasets confirm that LSEF significantly enhances robustness and dynamic discrimination, which further validates the effectiveness and generality of hierarchical low-rank sparse modeling for understanding affective dynamics.




Abstract:Dynamic facial expression recognition (DFER) faces significant challenges due to long-tailed category distributions and complexity of spatio-temporal feature modeling. While existing deep learning-based methods have improved DFER performance, they often fail to address these issues, resulting in severe model induction bias. To overcome these limitations, we propose a novel multi-instance learning framework called MICACL, which integrates spatio-temporal dependency modeling and long-tailed contrastive learning optimization. Specifically, we design the Graph-Enhanced Instance Interaction Module (GEIIM) to capture intricate spatio-temporal between adjacent instances relationships through adaptive adjacency matrices and multiscale convolutions. To enhance instance-level feature aggregation, we develop the Weighted Instance Aggregation Network (WIAN), which dynamically assigns weights based on instance importance. Furthermore, we introduce a Multiscale Category-aware Contrastive Learning (MCCL) strategy to balance training between major and minor categories. Extensive experiments on in-the-wild datasets (i.e., DFEW and FERV39k) demonstrate that MICACL achieves state-of-the-art performance with superior robustness and generalization.
Abstract:The ultimate goal of artificial intelligence (AI) is to achieve Artificial General Intelligence (AGI). Embodied Artificial Intelligence (EAI), which involves intelligent systems with physical presence and real-time interaction with the environment, has emerged as a key research direction in pursuit of AGI. While advancements in deep learning, reinforcement learning, large-scale language models, and multimodal technologies have significantly contributed to the progress of EAI, most existing reviews focus on specific technologies or applications. A systematic overview, particularly one that explores the direct connection between EAI and AGI, remains scarce. This paper examines EAI as a foundational approach to AGI, systematically analyzing its four core modules: perception, intelligent decision-making, action, and feedback. We provide a detailed discussion of how each module contributes to the six core principles of AGI. Additionally, we discuss future trends, challenges, and research directions in EAI, emphasizing its potential as a cornerstone for AGI development. Our findings suggest that EAI's integration of dynamic learning and real-world interaction is essential for bridging the gap between narrow AI and AGI.




Abstract:The purpose of face super-resolution (FSR) is to reconstruct high-resolution (HR) face images from low-resolution (LR) inputs. With the continuous advancement of deep learning technologies, contemporary prior-guided FSR methods initially estimate facial priors and then use this information to assist in the super-resolution reconstruction process. However, ensuring the accuracy of prior estimation remains challenging, and straightforward cascading and convolutional operations often fail to fully leverage prior knowledge. Inaccurate or insufficiently utilized prior information inevitably degrades FSR performance. To address this issue, we propose a prior knowledge distillation network (PKDN) for FSR, which involves transferring prior information from the teacher network to the student network. This approach enables the network to learn priors during the training stage while relying solely on low-resolution facial images during the testing stage, thus mitigating the adverse effects of prior estimation inaccuracies. Additionally, we incorporate robust attention mechanisms to design a parsing map fusion block that effectively utilizes prior information. To prevent feature loss, we retain multi-scale features during the feature extraction stage and employ them in the subsequent super-resolution reconstruction process. Experimental results on benchmark datasets demonstrate that our PKDN approach surpasses existing FSR methods in generating high-quality face images.