Abstract:Reinforcement learning (RL) algorithms have been used recently to align diffusion models with downstream objectives such as aesthetic quality and text-image consistency by fine-tuning them to maximize a single reward function under a fixed KL regularization. However, this approach is inherently restrictive in practice, where alignment must balance multiple, often conflicting objectives. Moreover, user preferences vary across prompts, individuals, and deployment contexts, with varying tolerances for deviation from a pre-trained base model. We address the problem of inference-time multi-preference alignment: given a set of basis reward functions and a reference KL regularization strength, can we design a fine-tuning procedure so that, at inference time, it can generate images aligned with any user-specified linear combination of rewards and regularization, without requiring additional fine-tuning? We propose Diffusion Blend, a novel approach to solve inference-time multi-preference alignment by blending backward diffusion processes associated with fine-tuned models, and we instantiate this approach with two algorithms: DB-MPA for multi-reward alignment and DB-KLA for KL regularization control. Extensive experiments show that Diffusion Blend algorithms consistently outperform relevant baselines and closely match or exceed the performance of individually fine-tuned models, enabling efficient, user-driven alignment at inference-time. The code is available at https://github.com/bluewoods127/DB-2025}{github.com/bluewoods127/DB-2025.
Abstract:The electricity sector is undergoing substantial transformations due to the rising electrification of demand, enhanced integration of renewable energy resources, and the emergence of new technologies. These changes are rendering the electric grid more volatile and unpredictable, making it difficult to maintain reliable operations. In order to address these issues, advanced time series prediction models are needed for closing the gap between the forecasted and actual grid outcomes. In this paper, we introduce a multivariate time series prediction model that combines traditional state space models with deep learning methods to simultaneously capture and predict the underlying dynamics of multiple time series. Additionally, we design a time series processing module that incorporates high-resolution external forecasts into sequence-to-sequence prediction models, achieving this with negligible increases in size and no loss of accuracy. We also release an extended dataset spanning five years of load, electricity price, ancillary service price, and renewable generation. To complement this dataset, we provide an open-access toolbox that includes our proposed model, the dataset itself, and several state-of-the-art prediction models, thereby creating a unified framework for benchmarking advanced machine learning approaches. Our findings indicate that the proposed model outperforms existing models across various prediction tasks, improving state-of-the-art prediction error by an average of 7% and decreasing model parameters by 43%.