Abstract:Continual learning in Large Language Models (LLMs) is hindered by the plasticity-stability dilemma, where acquiring new capabilities often leads to catastrophic forgetting of previous knowledge. Existing methods typically treat parameters uniformly, failing to distinguish between specific task knowledge and shared capabilities. We introduce Mixture of Sparse Experts for Task-Agnostic Continual Learning, referred to as SETA, a framework that resolves the plasticity-stability conflict by decomposing the model into modular subspaces. Unlike standard updates, where tasks compete for the same parameters, SETA separates knowledge into unique experts, designed to isolate task-specific patterns, and shared experts, responsible for capturing common features. This structure is maintained through elastic weight anchoring, which protects critical shared knowledge and enables a unified gating network to automatically retrieve the correct expert combination for each task during inference. Extensive experiments across diverse domain-specific and general benchmarks demonstrate that SETA consistently outperforms state-of-the-art parameter-efficient fine-tuning-based continual learning methods.
Abstract:Heterogeneous Federated Learning (HFL) has gained attention for its ability to accommodate diverse models and heterogeneous data across clients. Prototype-based HFL methods emerge as a promising solution to address statistical heterogeneity and privacy challenges, paving the way for new advancements in HFL research. This method focuses on sharing only class-representative prototypes among heterogeneous clients. However, these prototypes are often aggregated on the server using weighted averaging, leading to sub-optimal global knowledge; these cause the shrinking of aggregated prototypes, which negatively affects the model performance in scenarios when models are heterogeneous and data distributions are extremely non-IID. We propose FedProtoKD in a Heterogeneous Federated Learning setting, using an enhanced dual-knowledge distillation mechanism to improve the system performance with clients' logits and prototype feature representation. We aim to resolve the prototype margin-shrinking problem using a contrastive learning-based trainable server prototype by leveraging a class-wise adaptive prototype margin. Furthermore, we assess the importance of public samples using the closeness of the sample's prototype to its class representative prototypes, which enhances learning performance. FedProtoKD achieved average improvements of 1.13% up to 34.13% accuracy across various settings and significantly outperforms existing state-of-the-art HFL methods.