Abstract:We present SAGA, a versatile and adaptive framework for visuomotor control that can generalize across various environments, task objectives, and user specifications. To efficiently learn such capability, our key idea is to disentangle high-level semantic intent from low-level visuomotor control by explicitly grounding task objectives in the observed environment. Using an affordance-based task representation, we express diverse and complex behaviors in a unified, structured form. By leveraging multimodal foundation models, SAGA grounds the proposed task representation to the robot's visual observation as 3D affordance heatmaps, highlighting task-relevant entities while abstracting away spurious appearance variations that would hinder generalization. These grounded affordances enable us to effectively train a conditional policy on multi-task demonstration data for whole-body control. In a unified framework, SAGA can solve tasks specified in different forms, including language instructions, selected points, and example demonstrations, enabling both zero-shot execution and few-shot adaptation. We instantiate SAGA on a quadrupedal manipulator and conduct extensive experiments across eleven real-world tasks. SAGA consistently outperforms end-to-end and modular baselines by substantial margins. Together, these results demonstrate that structured affordance grounding offers a scalable and effective pathway toward generalist mobile manipulation.
Abstract:The ability to flexibly leverage limbs for loco-manipulation is essential for enabling autonomous robots to operate in unstructured environments. Yet, prior work on loco-manipulation is often constrained to specific tasks or predetermined limb configurations. In this work, we present Reinforcement Learning for Interlimb Coordination (ReLIC), an approach that enables versatile loco-manipulation through flexible interlimb coordination. The key to our approach is an adaptive controller that seamlessly bridges the execution of manipulation motions and the generation of stable gaits based on task demands. Through the interplay between two controller modules, ReLIC dynamically assigns each limb for manipulation or locomotion and robustly coordinates them to achieve the task success. Using efficient reinforcement learning in simulation, ReLIC learns to perform stable gaits in accordance with the manipulation goals in the real world. To solve diverse and complex tasks, we further propose to interface the learned controller with different types of task specifications, including target trajectories, contact points, and natural language instructions. Evaluated on 12 real-world tasks that require diverse and complex coordination patterns, ReLIC demonstrates its versatility and robustness by achieving a success rate of 78.9% on average. Videos and code can be found at https://relic-locoman.github.io/.