Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
MedLatin1 and MedLatin2: Two Datasets for the Computational Authorship Analysis of Medieval Latin Texts

Jun 22, 2020
Silvia Corbara, Alejandro Moreo, Fabrizio Sebastiani, Mirko Tavoni


  Access Paper or Ask Questions

SemEval-2016 Task 4: Sentiment Analysis in Twitter

Dec 03, 2019
Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, Veselin Stoyanov

* SemEval-2016 
* Sentiment analysis, sentiment towards a topic, quantification, microblog sentiment analysis; Twitter opinion mining. arXiv admin note: text overlap with arXiv:1912.00741 

  Access Paper or Ask Questions

Word-Class Embeddings for Multiclass Text Classification

Nov 26, 2019
Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani


  Access Paper or Ask Questions

Cross-Lingual Sentiment Quantification

Apr 16, 2019
Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani


  Access Paper or Ask Questions

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning and its Application to Cross-Lingual Text Classification

Apr 16, 2019
Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani

* Forthcoming in the ACM Transactions on Information Systems, 2019 
* 28 pages, 4 figures 

  Access Paper or Ask Questions

Building Automated Survey Coders via Interactive Machine Learning

Mar 28, 2019
Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani

* To appear in the International Journal of Market Research 

  Access Paper or Ask Questions

Learning to Weight for Text Classification

Mar 28, 2019
Alejandro Moreo Fernández, Andrea Esuli, Fabrizio Sebastiani

* To appear in IEEE Transactions on Knowledge and Data Engineering 

  Access Paper or Ask Questions

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning and its Application to Polylingual Text Classification

Jan 31, 2019
Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani

* 28 pages, 4 figures 

  Access Paper or Ask Questions

Revisiting Distributional Correspondence Indexing: A Python Reimplementation and New Experiments

Oct 19, 2018
Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani


  Access Paper or Ask Questions

Evaluation Measures for Quantification: An Axiomatic Approach

Sep 06, 2018
Fabrizio Sebastiani

* 36 pages, 2 figures. Submitted for publication in the Information Retrieval Journal 

  Access Paper or Ask Questions

A Recurrent Neural Network for Sentiment Quantification

Sep 04, 2018
Andrea Esuli, Alejandro Moreo Fernández, Fabrizio Sebastiani

* Accepted for publication at CIKM 2018 

  Access Paper or Ask Questions

Optimizing Non-decomposable Measures with Deep Networks

Jan 31, 2018
Amartya Sanyal, Pawan Kumar, Purushottam Kar, Sanjay Chawla, Fabrizio Sebastiani


  Access Paper or Ask Questions

Online Optimization Methods for the Quantification Problem

Jun 13, 2016
Purushottam Kar, Shuai Li, Harikrishna Narasimhan, Sanjay Chawla, Fabrizio Sebastiani

* 26 pages, 6 figures. A short version of this manuscript will appear in the proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2016 

  Access Paper or Ask Questions

Optimizing Text Quantifiers for Multivariate Loss Functions

Apr 15, 2015
Andrea Esuli, Fabrizio Sebastiani

* In press in ACM Transactions on Knowledge Discovery from Data, 2015 

  Access Paper or Ask Questions

On the Effects of Low-Quality Training Data on Information Extraction from Clinical Reports

Mar 04, 2015
Diego Marcheggiani, Fabrizio Sebastiani

* Submitted for publication 

  Access Paper or Ask Questions

Utility-Theoretic Ranking for Semi-Automated Text Classification

Mar 02, 2015
Giacomo Berardi, Andrea Esuli, Fabrizio Sebastiani

* Forthcoming on ACM Transactions on Knowledge Discovery from Data 

  Access Paper or Ask Questions

Machine Learning in Automated Text Categorization

Oct 26, 2001
Fabrizio Sebastiani

* Accepted for publication on ACM Computing Surveys 

  Access Paper or Ask Questions