Abstract:The ability to selectively attend to relevant stimuli while filtering out distractions is essential for agents that process complex, high-dimensional sensory input. This paper introduces a model of covert and overt visual attention through the framework of active inference, utilizing dynamic optimization of sensory precisions to minimize free-energy. The model determines visual sensory precisions based on both current environmental beliefs and sensory input, influencing attentional allocation in both covert and overt modalities. To test the effectiveness of the model, we analyze its behavior in the Posner cueing task and a simple target focus task using two-dimensional(2D) visual data. Reaction times are measured to investigate the interplay between exogenous and endogenous attention, as well as valid and invalid cueing. The results show that exogenous and valid cues generally lead to faster reaction times compared to endogenous and invalid cues. Furthermore, the model exhibits behavior similar to inhibition of return, where previously attended locations become suppressed after a specific cue-target onset asynchrony interval. Lastly, we investigate different aspects of overt attention and show that involuntary, reflexive saccades occur faster than intentional ones, but at the expense of adaptability.
Abstract:For autonomous robotics applications, it is crucial that robots are able to accurately measure their potential state and perceive their environment, including other agents within it (e.g., cobots interacting with humans). The redundancy of these measurements is important, as it allows for planning and execution of recovery protocols in the event of sensor failure or external disturbances. Visual estimation can provide this redundancy through the use of low-cost sensors and server as a standalone source of proprioception when no encoder-based sensing is available. Therefore, we estimate the configuration of the robot jointly with its pose, which provides a complete spatial understanding of the observed robot. We present GISR - a method for deep configuration and robot-to-camera pose estimation that prioritizes real-time execution. GISR is comprised of two modules: (i) a geometric initialization module, efficiently computing an approximate robot pose and configuration, and (ii) an iterative silhouette-based refinement module that refines the initial solution in only a few iterations. We evaluate our method on a publicly available dataset and show that GISR performs competitively with existing state-of-the-art approaches, while being significantly faster compared to existing methods of the same class. Our code is available at https://github.com/iwhitey/GISR-robot.