Abstract:Oversmoothing has been recognized as a main obstacle to building deep Graph Neural Networks (GNNs), limiting the performance. This position paper argues that the influence of oversmoothing has been overstated and advocates for a further exploration of deep GNN architectures. Given the three core operations of GNNs, aggregation, linear transformation, and non-linear activation, we show that prior studies have mistakenly confused oversmoothing with the vanishing gradient, caused by transformation and activation rather than aggregation. Our finding challenges prior beliefs about oversmoothing being unique to GNNs. Furthermore, we demonstrate that classical solutions such as skip connections and normalization enable the successful stacking of deep GNN layers without performance degradation. Our results clarify misconceptions about oversmoothing and shed new light on the potential of deep GNNs.
Abstract:Model merging has emerged as a powerful technique for combining task-specific weights, achieving superior performance in multi-target domain adaptation. However, when applied to practical scenarios, such as quantized models, new challenges arise. In practical scenarios, quantization is often applied to target-specific data, but this process restricts the domain of interest and introduces discretization effects, making model merging highly non-trivial. In this study, we analyze the impact of quantization on model merging through the lens of error barriers. Leveraging these insights, we propose a novel post-training quantization, HDRQ - Hessian and distant regularizing quantization - that is designed to consider model merging for multi-target domain adaptation. Our approach ensures that the quantization process incurs minimal deviation from the source pre-trained model while flattening the loss surface to facilitate smooth model merging. To our knowledge, this is the first study on this challenge, and extensive experiments confirm its effectiveness.
Abstract:Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-tuning (PEFT) of generative models, valued for its simplicity and effectiveness. Despite recent enhancements, LoRA still suffers from a fundamental limitation: overfitting when the bottleneck is widened. It performs best at ranks 32-64, yet its accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning (FFT) performance. We identify the root cause as LoRA's structural bottleneck, which introduces gradient entanglement to the unrelated input channels and distorts gradient propagation. To address this, we introduce a novel structure, Granular Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks, each with its own low-rank adapter. With negligible computational or storage cost, GraLoRA overcomes LoRA's limitations, effectively increases the representational capacity, and more closely approximates FFT behavior. Experiments on code generation and commonsense reasoning benchmarks show that GraLoRA consistently outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in Pass@1 on HumanEval+. These improvements hold across model sizes and rank settings, making GraLoRA a scalable and robust solution for PEFT. Code, data, and scripts are available at https://github.com/SqueezeBits/GraLoRA.git
Abstract:It has become increasingly important to optimize backpropagation to reduce memory usage and computational overhead. Achieving this goal is highly challenging, as multiple objectives must be considered jointly while maintaining training quality. In this paper, we focus on matrix multiplication, which accounts for the largest portion of training costs, and analyze its backpropagation in detail to identify lightweight techniques that offer the best benefits. Based on this analysis, we introduce a novel method, Hadamard-based Optimized Training (HOT). In this approach, we apply Hadamard-based optimizations, such as Hadamard quantization and Hadamard low-rank approximation, selectively and with awareness of the suitability of each optimization for different backward paths. Additionally, we introduce two enhancements: activation buffer compression and layer-wise quantizer selection. Our extensive analysis shows that HOT achieves up to 75% memory savings and a 2.6 times acceleration on real GPUs, with negligible accuracy loss compared to FP32 precision.
Abstract:Recently, diffusion models have achieved significant advances in vision, text, and robotics. However, they still face slow generation speeds due to sequential denoising processes. To address this, a parallel sampling method based on Picard iteration was introduced, effectively reducing sequential steps while ensuring exact convergence to the original output. Nonetheless, Picard iteration does not guarantee faster convergence, which can still result in slow generation in practice. In this work, we propose a new parallelization scheme, the Picard Consistency Model (PCM), which significantly reduces the number of generation steps in Picard iteration. Inspired by the consistency model, PCM is directly trained to predict the fixed-point solution, or the final output, at any stage of the convergence trajectory. Additionally, we introduce a new concept called model switching, which addresses PCM's limitations and ensures exact convergence. Extensive experiments demonstrate that PCM achieves up to a 2.71x speedup over sequential sampling and a 1.77x speedup over Picard iteration across various tasks, including image generation and robotic control.
Abstract:In this work, we introduce a novel approach called Scaling to Emphasize Attention for Long-context retrieval (SEAL), which enhances the retrieval performance of large language models (LLMs) over extended contexts. Previous studies have shown that each attention head in LLMs has a unique functionality and collectively contributes to the overall behavior of the model. Similarly, we observe that specific heads are closely tied to long-context retrieval, showing positive or negative correlation with retrieval scores. Built on this insight, we propose a learning-based mechanism using zero-shot generated data to emphasize these heads, improving the model's performance in long-context retrieval tasks. By applying SEAL, we can achieve significant improvements in in-domain retrieval performance, including document QA tasks from LongBench, and considerable improvements in out-of-domain cases. Additionally, when combined with existing training-free context extension techniques, SEAL extends the context limits of LLMs while maintaining highly reliable outputs, opening new avenues for research in this field.
Abstract:Visual Mamba is an approach that extends the selective space state model, Mamba, to vision tasks. It processes image tokens sequentially in a fixed order, accumulating information to generate outputs. Despite its growing popularity for delivering high-quality outputs at a low computational cost across various tasks, Visual Mamba is highly susceptible to quantization, which makes further performance improvements challenging. Our analysis reveals that the fixed token access order in Visual Mamba introduces unique quantization challenges, which we categorize into three main issues: 1) token-wise variance, 2) channel-wise outliers, and 3) a long tail of activations. To address these challenges, we propose Post-Training Quantization for Visual Mamba (PTQ4VM), which introduces two key strategies: Per-Token Static (PTS) quantization and Joint Learning of Smoothing Scale and Step Size (JLSS). To the our best knowledge, this is the first quantization study on Visual Mamba. PTQ4VM can be applied to various Visual Mamba backbones, converting the pretrained model to a quantized format in under 15 minutes without notable quality degradation. Extensive experiments on large-scale classification and regression tasks demonstrate its effectiveness, achieving up to 1.83x speedup on GPUs with negligible accuracy loss compared to FP16. Our code is available at https://github.com/YoungHyun197/ptq4vm.
Abstract:With the rapid growth in the use of fine-tuning for large language models (LLMs), optimizing fine-tuning while keeping inference efficient has become highly important. However, this is a challenging task as it requires improvements in all aspects, including inference speed, fine-tuning speed, memory consumption, and, most importantly, model quality. Previous studies have attempted to achieve this by combining quantization with fine-tuning, but they have failed to enhance all four aspects simultaneously. In this study, we propose a new lightweight technique called Quantization for Efficient Fine-Tuning (QEFT). QEFT accelerates both inference and fine-tuning, is supported by robust theoretical foundations, offers high flexibility, and maintains good hardware compatibility. Our extensive experiments demonstrate that QEFT matches the quality and versatility of full-precision parameter-efficient fine-tuning, while using fewer resources. Our code is available at https://github.com/xvyaward/qeft.
Abstract:With the rapid increase in model size and the growing importance of various fine-tuning applications, lightweight training has become crucial. Since the backward pass is twice as expensive as the forward pass, optimizing backpropagation is particularly important. However, modifications to this process can lead to suboptimal convergence, so training optimization should minimize perturbations, which is a highly challenging task. In this study, we introduce a novel optimization strategy called Hadamard Low-rank Quantization (HLQ), focusing on reducing the cost of backpropagation in convolutional and linear layers. We first analyze the sensitivity of gradient computation with respect to activation and weight, and judiciously design the HLQ pipeline to apply 4-bit Hadamard quantization to the activation gradient and Hadamard low-rank approximation to the weight gradient. This combination was found to be the best for maximizing benefits, and our extensive experiments demonstrate the outstanding performance of HLQ in both training from scratch and fine-tuning, achieving significant memory savings and acceleration on real GPUs with negligible quality degradation.
Abstract:As recent advancements in large-scale Text-to-Image (T2I) diffusion models have yielded remarkable high-quality image generation, diverse downstream Image-to-Image (I2I) applications have emerged. Despite the impressive results achieved by these I2I models, their practical utility is hampered by their large model size and the computational burden of the iterative denoising process. In this paper, we explore the compression potential of these I2I models in a task-oriented manner and introduce a novel method for reducing both model size and the number of timesteps. Through extensive experiments, we observe key insights and use our empirical knowledge to develop practical solutions that aim for near-optimal results with minimal exploration costs. We validate the effectiveness of our method by applying it to InstructPix2Pix for image editing and StableSR for image restoration. Our approach achieves satisfactory output quality with 39.2% and 56.4% reduction in model footprint and 81.4% and 68.7% decrease in latency to InstructPix2Pix and StableSR, respectively.