Abstract:The rapid advancement of Large Language Models (LLMs) has resulted in interest in their potential applications within manufacturing systems, particularly in the context of Industry 5.0. However, determining when to implement LLMs versus other Natural Language Processing (NLP) techniques, ontologies or knowledge graphs, remains an open question. This paper offers decision-making guidance for selecting the most suitable technique in various industrial contexts, emphasizing human-robot collaboration and resilience in manufacturing. We examine the origins and unique strengths of LLMs, ontologies, and knowledge graphs, assessing their effectiveness across different industrial scenarios based on the number of domains or disciplines required to bring a product from design to manufacture. Through this comparative framework, we explore specific use cases where LLMs could enhance robotics for human-robot collaboration, while underscoring the continued relevance of ontologies and knowledge graphs in low-dependency or resource-constrained sectors. Additionally, we address the practical challenges of deploying these technologies, such as computational cost and interpretability, providing a roadmap for manufacturers to navigate the evolving landscape of Language based AI tools in Industry 5.0. Our findings offer a foundation for informed decision-making, helping industry professionals optimize the use of Language Based models for sustainable, resilient, and human-centric manufacturing. We also propose a Large Knowledge Language Model architecture that offers the potential for transparency and configuration based on complexity of task and computing resources available.
Abstract:This paper summarizes the results of the first Monocular Depth Estimation Challenge (MDEC) organized at WACV2023. This challenge evaluated the progress of self-supervised monocular depth estimation on the challenging SYNS-Patches dataset. The challenge was organized on CodaLab and received submissions from 4 valid teams. Participants were provided a devkit containing updated reference implementations for 16 State-of-the-Art algorithms and 4 novel techniques. The threshold for acceptance for novel techniques was to outperform every one of the 16 SotA baselines. All participants outperformed the baseline in traditional metrics such as MAE or AbsRel. However, pointcloud reconstruction metrics were challenging to improve upon. We found predictions were characterized by interpolation artefacts at object boundaries and errors in relative object positioning. We hope this challenge is a valuable contribution to the community and encourage authors to participate in future editions.