Abstract:The rapid advancement of Large Language Models (LLMs) has resulted in interest in their potential applications within manufacturing systems, particularly in the context of Industry 5.0. However, determining when to implement LLMs versus other Natural Language Processing (NLP) techniques, ontologies or knowledge graphs, remains an open question. This paper offers decision-making guidance for selecting the most suitable technique in various industrial contexts, emphasizing human-robot collaboration and resilience in manufacturing. We examine the origins and unique strengths of LLMs, ontologies, and knowledge graphs, assessing their effectiveness across different industrial scenarios based on the number of domains or disciplines required to bring a product from design to manufacture. Through this comparative framework, we explore specific use cases where LLMs could enhance robotics for human-robot collaboration, while underscoring the continued relevance of ontologies and knowledge graphs in low-dependency or resource-constrained sectors. Additionally, we address the practical challenges of deploying these technologies, such as computational cost and interpretability, providing a roadmap for manufacturers to navigate the evolving landscape of Language based AI tools in Industry 5.0. Our findings offer a foundation for informed decision-making, helping industry professionals optimize the use of Language Based models for sustainable, resilient, and human-centric manufacturing. We also propose a Large Knowledge Language Model architecture that offers the potential for transparency and configuration based on complexity of task and computing resources available.
Abstract:Object rearrangement is a significant task for collaborative robots, where they are directed to manipulate objects into a specified goal state. Determining the placement of objects is a major challenge that influences the efficiency of the rearrangement process. Most current methods heavily rely on pre-collected datasets to train the model for predicting the goal position and are restricted to specific instructions, which limits their broader applicability and effectiveness.In this paper, we propose a framework of language-conditioned object rearrangement based on the Large Language Model (LLM). Particularly, our approach mimics human reasoning by using past successful experiences as a reference to infer the desired goal position. Based on LLM's strong natural language comprehension and inference ability, our method can generalise to handle various everyday objects and free-form language instructions in a zero-shot manner. Experimental results demonstrate that our methods can effectively execute the robotic rearrangement tasks, even those involving long sequential orders.